
 

FEATURE ARTICLE: Microservices 

Consistent Disaster 
Recovery for 
Microservices:                
the BAC Theorem 

How do you back up a microservice? You dump its 

database. But how do you back up an entire 

application decomposed into microservices? In this 

article, we discuss the tradeoff between the 

availability and consistency of a microservice-based 

architecture when a backup of the entire application is 

being performed. We demonstrate that service 

designers have to select two out of three qualities: 

backup, availability, and/or consistency (BAC). 

Service designers must also consider how to deal with consequences such as broken 

links, orphan state, and missing state. 

Microservices are about the design of fine-grained services, which can be developed and operat-
ed by independent teams, ensuring that an architecture can organically grow and rapidly evolve.1 
By definition, each microservice is independently deployable and scalable; each stateful one 
relies on its own (“polyglot”) persistent storage mechanism. Integration at the database layer is 
not recommended, because it introduces coupling between the data representation internally used 
by multiple microservices. Instead, microservices should interact only through well-defined 
APIs, which—following the REST architectural style2—provide a clear mechanism for manag-
ing the state of the resources exposed by each microservice. Relationships between related enti-
ties are implemented using hypermedia,3 so that representations retrieved from one microservice 
API can include links to other entities found on other microservice APIs. While there is no guar-
antee that a link retrieved from one microservice will point to a valid URL served by another, a 
basic notion of consistency can be introduced for the microservice-based application, requiring 
that such references can always be resolved, thus avoiding broken links. As the scale of the 
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system grows, such a guarantee can be gradually weakened, as is currently the case for the 
World Wide Web. 

Microservice architectures are designed to survive individual microservice failures and to pre-
vent cascading failures of all services.4 Backing up and recovering a microservice is an important 
operation, which allows it to survive significant failures affecting its operating environment.5 For 
example, if one node of a cluster crashes, it should be possible to restart the microservice on 
another node and connect it to the same database so that it can access its corresponding state. If 
the database server itself crashes, it is possible to recover the database from previously executed 
dumps that are stored elsewhere. Backups can be performed from within the database or using a 
backup data pump, which periodically and incrementally synchronizes replicated databases. 

This article is concerned with the problem of backing up an entire microservice architecture 
where a running application decomposed into multiple microservices needs to be backed up so 
that it can be recovered after a disaster strikes. How should one do so and still guarantee a certain 
level of consistency between the various microservices? How should one do so without affecting 
the availability of the application? In particular, we are concerned with the full availability of the 
application, during which it is possible to both read its state and perform updates to any of its 
microservices. Depending on the chosen type of backup technique, it might be necessary to 
suspend normal operation and only allow for performing read operations, to ensure that the 
underlying state of each microservice is being backed up consistently. 

EVENTUAL INCONSISTENCY 
Following a domain-driven design methodology,6 a monolithic application (see the left image in 
Figure 1) may be split into different Bounded Contexts. This practice is beneficial to ensure the 
internal semantic consistency of each domain context, as well as to enable the interoperability of 
data exchanged between separate domains across a Context Map. This method is also recom-
mended when splitting up the monolith into multiple microservices (see the right image in Figure 
1) that remain logically connected by a set of loose relationships between their data models. For 
example, a sales-related application is split into one microservice to handle customers, one to 
manage the product catalog and warehouse inventory, another to manage orders, and yet another 
to handle the shipping process. Clearly, a shipment must refer to a given customer and to a spe-
cific order, which should refer to the actual products (see Figure 2). 

 

Figure 1: (Left) monolithic architecture and (right) microservice architecture. 

While normal operations will lead to the eventual consistency7–8 of the state of the application 
partitioned across multiple microservices, when disaster strikes, the state of the recovered appli-
cation will eventually become inconsistent due to snapshot timing issues. 

Even if every backup of individual microservices can be trusted for their independent recovery, 
as a whole, it is likely that the state of the application will not converge and will remain incon-
sistent when each microservice has been backed up and recovered independently. For example, it 
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might be problematic if after the independent recovery of each microservice some orders would 
refer to missing product descriptions or some shipments would point to customers no longer 
present in the corresponding recovered microservice. 

 
Figure 2: An example microservice architecture with references spanning across individual 
microservices. 

To avoid this, it is important that the snapshot taken to back up every microservice is taken not 
necessarily at the same time, but when the overall application state was consistent. While the 
backup is underway, clients may not be allowed to perform arbitrary update operations spanning 
multiple microservices. Depending on the size of the snapshot and whether a full backup or an 
incremental backup technique is performed, this might require a non-negligible amount of time. 

Alternatively, if introducing extra data loss during recovery is not a problem, it would be possi-
ble to achieve consistency across all microservices by rolling back the state of every micro-
service to the point in time when the oldest backup of one microservice was taken. This is not 
acceptable in many application scenarios and contexts. 

THE BAC THEOREM 
In this article, we present the BAC theorem for microservices, which states:  

When backing up an entire microservices architecture, it is not possible to have both avail-
ability and consistency.  

The theorem is inspired by the CAP theorem,9 trading off consistency against availability in 
distributed (replicated) databases. The informal proof is similar. If we allow each microservice to 
evolve its state independently and perform a backup of every microservice at a different time, the 
whole set of backups will not offer a consistent view over the state of the whole application. In 
case of recovery, each of its microservices will be restarted from a snapshot taken independently, 
and, thus, it is possible that related entities between microservices will be missing. As opposed to 
normal operation when this is allowed to happen because the various microservices will eventu-
ally reach a consistent state,10 in case of recovery, this will not happen because the clients per-
forming distributed transactions11 over the microservices will be long gone. 

The alternative to ensure consistency would be to lock the entire application during the backup 
and make sure that the state of its microservices is snapshotted at the same time. Locking the 
entire application would compromise its full availability, because only read operations would be 
allowed while backing up. Depending on the duration of the backup (which is bound by the 
slowest microservice), this might affect the clients whose requests to change the state of some 
microservice might have to be denied or delayed until the backup of the entire application is 
completed. 
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Conceptual Model: Commands and Events 
Our abstract model of a microservice is inspired by domain-driven design (DDD),6 which intro-
duces patterns such as Service, Aggregate, and Domain Event to decompose the business logic 
of an application into discrete, loosely coupled processing units, each of which has a single 
reason to change.12 

A microservice accepts “commands”—either through user input or by processing “domain 
events” from other microservices. Commands can fail due to validation or integrity constraints 
by the receiving service. When processed successfully, commands can result in the publication 
of one or more events reflecting the outcome of the command. Events do not “fail” because they 
are merely notifications of things that already happened. Events can be lost, though, in particular 
(for this article) due to recovery from an obsolete backup. A microservice that receives an event 
can convert it into a command for local processing. Such a command in turn can fail (in particu-
lar if the microservice does not understand the event after disaster recovery). 

Microservices refer to each other’s data through loosely coupled references. If microservices 
expose a RESTful HTTP API, these references naturally correspond to resource identifiers. Each 
data item is owned by exactly one microservice and referenced by any number of other micro-
services. 

Without loss of generality, microservices are using the event storage pattern13 for managing 
changes applied to their state. The database of the microservice thus contains a log of business 
events, which can be replayed to bring the state of the microservice to its latest version, while 
keeping track of its history for auditing and debugging purposes. 

Some of the events in the log are local (such as the creation of a new customer record). Some 
events conceptually cross the boundary between the two microservices. For example, when a 
customer orders a new shipment, an event will be added to the shipment microservice (the ship-
ment order) and another will be added to the customer microservice (the reference to the ship-
ment order in the customer shipment collection). More generally, in this case, there is an 
interaction between microservices (the request to create a new shipment order for a given cus-
tomer), which results in a state transition for both of them. Thus, a new event is added to the log 
of each microservice. 

Eventual Inconsistency with Full Availability 
When making an independent backup of the state (the event log) of each service, it is possible 
that one service will be backed up before the event is added to the log, while the other service 
will be backed up after the corresponding event is added to its log. When restoring the services 
from backup, only one of the two services will recover its complete log. The global state of the 
microservice architecture will thus become inconsistent after restoring it from backup. In a simi-
lar way, during the execution of a particular use case, it is possible that one service is backed up 
before a command is executed in it, while another service is backed up after the corresponding 
command (of the same use case) is executed in it. 

In a hypermedia context, the inconsistency typically manifests itself after the recovery from 
backup of the services in the following ways:  

• Broken link. This is when the reference can no longer be followed—for example, where, 
using database terminology, foreign key records are recovered without the correspond-
ing primary key records. In Figure 3, the up-to-date Microservice A refers to an obsolete 
version of the other Microservice B, where the referenced entity cannot be found after it 
has been recovered. The inconsistency can thus be detected when clients try to follow 
the reference from A to B and instead find that the link is broken. 

• Orphan state. This is when there is no reference to be followed—for example, where 
primary key records are recovered without the corresponding foreign key records. In 
Figure 4, the state of the up-to-date Microservice A is no longer referenced from the 
state of the Microservice B recovered from an obsolete backup. This situation might be 
more difficult to detect from clients, because there are no immediately visible inconsist-



 

 MICROSERVICES 

encies when they interact with either service. However, this might introduce storage 
space leaks for A, if there is no garbage-collection mechanism for such orphan states. 
Moreover, duplicate event log entries for A might be introduced (which might lead to 
unwanted side effects), as the obsolete Microservice B is brought up to date. 
 

In the general case, we call this phenomenon “missing state” – an example of which is 
shown in Figure 5: Microservice B remains consistent with A until it crashes. After recov-
ery from an obsolete backup, B does not have the state corresponding to the latest events 
logged by A.  

 

 

Figure 3: Broken link. The event logs tracking the state updates of each microservice are backed 
up independently at different times. The colored arrows indicate the points in time in which the 
backup snapshot of each log was taken. The colored events are the ones that have been copied to 
the backup. A/3 → B/3 shows that there is a reference from A to B. When the state of Microservice 
B is recovered, it will be inconsistent with respect to Microservice A referring to it: B/3 is no longer 
part of the recovered state of service B, hence the broken link. 

Consistent Backups with Limited Availability 
It becomes possible to avoid the inconsistency by coordinating the backup of the two services to 
ensure that a snapshot is taken either before the interaction takes place or after the effects of the 
interaction have been logged on both sides. This means that, while the backup is running, no 
events can be added to the microservice logs, effectively reducing the availability of the micro-
services for clients that need to perform some state transitions/write operations. 

This, however, violates the independence of the two microservice disaster recovery processes, as 
it introduces tight coupling into their operational lifecycles. While this might be possible to 
achieve for a small number of microservices, chances are that it will become impractical as the 
number of related microservices grows. The mere number of microservices is not problematic as 
such, but things get difficult if many or all of them have relationships with each other. The se-
mantic complexity of the domain and the chosen microservice decomposition granularity will 
avoid or exacerbate the problem. 
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Figure 4: Orphan state. The event logs are backed up independently at different times, indicated by 
the coloring. When the state of Microservice B is recovered, it will be inconsistent with respect to 
Microservice A, which is no longer referring to it. In the figure, the reference A/3 → B/3 is not 
backed up. So, after recovery, B/3 is orphaned, as there is no longer a reference to it from A. 

 

Figure 5: Missing state. A and A’ are service-specific representations of related entities affected by 
the same events or commands. The event logs are backed up independently at different times 
(shown in color). When the state of Microservice B is recovered, it will be inconsistent with respect 
to Microservice A, as the entities A’/3, A’/4 corresponding to A/3, A/4 are missing.  
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DEALING WITH THE CONSEQUENCES OF THE BAC 
THEOREM 
How should one design microservices that are aware of the consequences of the BAC theorem 
and can thus deal with the possible eventual inconsistency introduced by their independent back-
up and recovery? 

Dealing with Broken Links 
Broken links in A after a restore (with old data) of B are equivalent to long-duration unavailabil-
ity of B during normal operation. Typical strategies include: 

1. Reconstructing B to contain a valid reference. A human (possibly the user) could be 
asked to restore the state of B to a correct one, including the missing reference. Until 
reconstruction happens, A will have to tolerate the missing reference (which it has to 
do during normal operations anyway, when temporary network glitches cause the una-
vailability of B). In some cases, reconstruction of B might not be possible. For in-
stance, if B was a reservation of a scarce resource (like an airplane seat on a flight), the 
flight might be fully booked in the meantime. Restoring a reservation system with data 
loss probably results in overbooking, a common source of headaches for most airlines. 

2. Doing nothing. The system and its users can accept that some parts of the system can 
be inconsistent. This strategy can be acceptable if the reference to B is only there for 
informational purposes (not really needed for A to function). As the scale of the appli-
cation grows larger with an increasingly large number of microservices, users might 
not expect full consistency at all times. Business criticality and quality attributes such 
as accuracy and auditability, as well as related compliance controls, are key decision 
drivers here. 

3. Caching. Microservice A could cache whatever data it needs from B, so that it has at 
least something to work with. Caching can work through either batch exports and im-
ports, storing events from B in a cache at A, or fetching all relevant data from B when 
A establishes the reference. 

When processing user commands, Strategies 1 and 3 seem like reasonable options: either the 
user rectifies any problems, or the system uses whatever it remembers in its cache to proceed. 
But what about processing commands that result from incoming events? In other words, what 
does a service do if it receives events and detects broken links? In that case, Strategy 1 is not 
very practical because the user is typically not involved in event processing. Instead, the system 
could use Strategy 3 to have the missing data cached, or it could process with warnings and 
resort to Strategy 1 at a later time when a user logs in. Lastly, the system could ignore any miss-
ing data, using Strategy 2. In any case, broken links should be logged as they are detected so that 
operators can decide which strategy to follow when attempting to restore the consistency of the 
application during or after disaster recovery. 

Dealing with Orphan State 
Orphan state may or may not be problematic, depending on the application. Some form of hu-
man intervention is required to decide what to do with orphan state. 

When processing user commands, orphans can be detected, as some microservices might already 
store information provided by the user. Thus, a solution could be to have the user interface or an 
API Gateway assume responsibility for flagging orphan candidates so that the users of the sys-
tem can easily fix any anomalies. It is recommended to regularly run a validation service and/or 
database consistency checker. 

What about processing commands that result from incoming events? Here, orphan state might 
cause validation errors and, consequently, the rejection of the incoming event. This is probably 
not desirable because orphan state should not disturb the normal system operation after a restore 
from backup. A lot of events can come in in high-volume systems—rejecting incoming events 
could cause a spike of errors or warnings that will be difficult to deal with in practice. A safer 
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strategy would be to treat incoming events as the latest version of the truth (which, in a way, they 
are) and ignore validation errors when processing incoming events. The careful developer will 
place a warning in the logs when this happens. 

Dealing with Missing State 
If events are easy to reproduce, B might simply ask for a replay of missed events. This requires 
some authoritative source where B can ask. 

If events are not easy to reproduce from their source, hopefully the event delivery infrastructure 
(if any) offers some form of reliability. If not, manual intervention in B might be needed to 
(re)apply the missing state in the form of one or more user commands. 

In all other cases, the only option might very well be to accept that events can be lost. 

DISCUSSION 

Avoiding the Problem 
When the challenges posed by BAC are too hard to solve, avoiding the problem can be your only 
option: make sure your backups are consistent. If you want to benefit from “referential integrity” 
(in the loose sense of the word), place related data in the same database (possibly using separate 
schemas) so they are backed up together. Hence, your microservices should be merged together 
as far as their state management is concerned (see Figure 6). 

 

Figure 6: Microservice architecture with shared database, trivially enabling consistent recovery but 
introducing undesired coupling between the microservices. 

Acknowledging the Problem 
An alternative strategy might simply be to be aware of the problem and the resulting data losses 
or eventual inconsistencies. For some applications, this can be an acceptable option. This strate-
gy must be carefully chosen, documented, and approved; at runtime, suited log entries should be 
created, and warnings should be sent to system administrators if justified in the given application 
scenario. 

Let the Business Guide You 
Microservices can be modelled around the existing departments and value streams of the busi-
ness. Each business department is responsible for its own data. The proven communication 
between and autonomy of these departments can hint at how to ensure that your microservices 
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are sufficiently decoupled to work in practice.12 In addition, the anomalies discussed in this 
article are probably known (indirectly) by the business already; chances are that appropriate 
policies exist already to take care of them. 

The Architect’s Job 
We’ve discussed a few options for dealing with BAC. There is no one-size-fits-all solution. The 
architect’s job is to decide which options work best for which set of microservices, especially in 
light of introducing an appropriate disaster recovery plan, dealing with how to perform backups 
(independently for individual microservices or globally for the entire system), and dealing with 
the consequences of restoring a system from potentially inconsistent backups (broken links, 
orphan state, and missing state). Thinking about these concerns before actually building your 
microservice ecosystem can save a lot of headaches afterwards. 

RELATED WORK 

High Availability and Replication 
When microservices rely on a highly available, replicated database,14 or when they are built as a 
replicated state machine,15 one could argue that there is no need for an additional backup-and-
recovery solution. Because there should always be N  > 1 replicas of the state (possibly stored in 
databases distributed across different locations, availability zones, or datacenters), the backup 
process is happening continuously, and the recovery can theoretically be instantaneous. 

Introducing a high-availability data layer for every microservice is, however, an expensive solu-
tion that greatly increases the operational complexity of the system. Likewise, even if micro-
services design principles married with DevOps and continuous integration practices appear to 
hint towards a world made of unstoppable systems whose services are in permanent operation, 
the question is whether it is wise to bet there will never be a need for recovering such systems 
from scratch. In general, the steep investment into a dedicated, highly available database solution 
with full replication to support every microservice might turn out to be difficult to justify. This 
ultimately needs to be compared against the cost of dealing with the eventual inconsistency of 
the application after its recovery. 

Distributed Snapshots 
Distributed snapshot algorithms16 are also applicable in our scenario for the global state detec-
tion and check-pointing of the entire architecture. Without the need for sharing a common clock 
or accessing shared memory, it is possible to coordinate the various microservices as they store 
their state into a snapshot for backup purposes. Additionally, the distributed snapshot algorithm 
is not supposed to interfere with the ongoing distributed computation, which would fit with the 
need to preserve the full availability of the microservices. 

However, the assumption of message-based, asynchronous communication over error-free, 
order-preserving channels whose content can also be snapshotted only partially fits with existing 
microservice architectures, where interactions are implemented using both message queues and 
the synchronous HTTP protocol. Likewise, ensuring that all microservices are designed to com-
ply with Lamport and Chandy’s requirements16 would strongly couple all microservices and 
limit the flexibility in their independent deployment, operation, and evolution. 

Interaction Contracts 
Going beyond traditional database recovery, Barga, Lomet, and Weikum proposed a comprehen-
sive form of recovery for multi-tier applications with communicating components.17 The ap-
proach was based on interaction contracts between persistent components assumed to behave 
piecewise deterministically. This way, it is possible to recover the state of a component, starting 
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from a known initial state (such as when the component was deployed) by replaying every mes-
sage it received in the same order they reached the component before the crash. This approach is, 
hence, also based on the notion of restoring a consistent state by replaying messages that would 
carry some form of commands and/or events in our frame of reference. 

Other Service Design Issues and Coupling Criteria 
Many architectural decisions and other hard design problems in service-oriented systems imple-
mented with microservices are identified and partially answered in C. Pautasso et al.12 How to 
handle backups remains an open problem according to the literature on microservice design in 
industry and academia. 

Loose coupling has many dimensions, including time, location, platform, and format.18 The 
Service Cutter methods and tool suggests microservices decompositions and re-compositions 
based on 16 functional and non-functional coupling criteria.19 These criteria can help decide for 
one or more of the strategies for dealing with the consequences of the BAC theorem that we 
presented in this article. Backup requirements and the BAC theorem can also be seen as an addi-
tional coupling criterion. 

CONCLUSION 
While splitting the monolith is the mantra of microservice architectures, it is important to realize 
that the granularity of the result depends on what you are trying to achieve. Increased develop-
ment velocity can be obtained with many loosely coupled development teams, which can deploy 
new versions of their microservice at will. However, the long-term sustainability of the applica-
tion might be harmed if, in case of disaster, it will be impossible to achieve a holistic recovery 
that brings back all microservices in a globally consistent state. Thus, it might be necessary to 
cluster together multiple microservices, which should be backed up in lockstep (see Figure 6). 
While this might not be necessary for all microservices into which the monolith has been de-
composed, chances are that the granularity of the microservices to be consistently backed-up will 
be larger. 
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