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Abstract: Trusted benchmarks should provide reproducible results obtained following a transparent and well-defined
process. In this paper, we show how Containers, originally developed to ease the automated deployment of
Cloud application components, can be used in the context of a benchmarking methodology. The proposed
methodology focuses on Workflow Management Systems (WfMSs), a critical service orchestration middle-
ware, which can be characterized by its architectural complexity, for which Docker Containers offer a highly
suitable approach. The contributions of our work are: 1) a new benchmarking approach taking full advantage
of containerization technologies; and 2) the formalization of the interaction process with the WfMS vendors
described clearly in a written agreement. Thus, we take advantage of emerging Cloud technologies to address
technical challenges, ensuring the performance measurements can be trusted. We also make the benchmarking
process transparent, automated and repeatable so that WfMS vendors can join the benchmarking effort.

1 Introduction

Performance benchmarking contributes to the
constant improvement of technology by clearly po-
sitioning the standards in measuring and assess-
ing performance. Benchmark results conducted un-
der the umbrella of research are recognized as a
great contribution to software evolution (Sim et al.,
2003). For example, the well-known and estab-
lished benchmark, TPC-C (Transaction Processing
Council (TPC), 1997) had a meritorious contribu-
tion to the performance of Database Management
Systems (DBMSs), which improved from 54 trans-
actions/minute in 1992 to over 10 million transac-
tions/minute in 2010. The importance of benchmark-
ing is also recognized by the emergence of organi-
sations, such as the Transaction Processing Perfor-
mance Council (TPC)1 and the Standard Performance
Evaluation Corporation (SPEC)2, that are responsible
for ensuring the integrity of the benchmarking pro-
cess and results. They maintain steering committees,
involving both industry and academic partners.

Widely accepted and trustworthy benchmarks
should demonstrate relevance, portability, scalability,
simplicity, vendor-neutrality, accessibility, repeatabil-
ity, efficiency and affordability (Gray, 1992; Huppler,
2009; Sim et al., 2003). These requirements impose
significant technical challenges regarding the automa-
tion of the benchmarking process, in order to facilitate
efficiency and scalability, i.e, the benchmarking of

1
https://www.tpc.org/

2
https://www.spec.org/

different systems; the repeatability of tests under the
same initial conditions; the reduction of noise from
the environment, etc. Benchmarks often face also lo-
gistic challenges, since many vendors3 use software
licence agreements to tightly control how benchmark
results, obtained using their products, are published.
Addressing such challenges is only possible with a
carefully designed methodology to manage the en-
tire benchmarking process, from the deployment of
the targeted system, through its testing, and up till the
publishing of the results.

In this paper, we propose a methodology for
benchmarking the performance of Workflow Manage-
ment Systems (WfMSs). As defined by the Workflow
Management Coalition (WfMC), a WfMS is “a sys-
tem that completely defines, manages and executes
‘workflows’ through the execution of software whose
order of execution is driven by a computer represen-
tation of the workflow logic” (Hollingsworth, 1995).
The WfMSs can use different languages to execute
the modeled workflows (e.g., WS-BPEL, BPMN 2.0).
Even though the proposed methodology is not limited
to any specific execution language, we use the Busi-
ness Process Model and Notation (BPMN) 2.0 (Jor-
dan and Evdemon, 2011) as a use case for describ-
ing its feasibility. There are several reasons behind
such decision: the growing usage of BPMN 2.0 and
the WfMSs that support it (e.g., Camunda, Activ-

3Like Oracle: http://www.oracle.com/

technetwork/licenses/standard-license-152015.

html and Microsoft: http://contracts.onecle.com/

aristotle-international/microsoft-eula.shtml



Figure 1: Benchmarking Input/Process/Output (IPO) Model

iti, jBPM, Bonita BPM4), the ISO standardization
(ISO/IEC 19510:2013) of the language and above all
the fact that BPMN 2.0 supports a superset of the ele-
ments supported by BPEL (Leymann, 2011).

Our methodology aims to offer solutions to the
aforementioned: 1) technical challenges by defin-
ing a benchmarking framework which benefits from
the emerging containerization technology, initially
used for deployment of Cloud applications (Turnbull,
2014); and 2) logistic challenges by formalising the
interaction between the conductor of the benchmark-
ing process (hereinafter the benchmarking team) and
the vendors of the WfMSs which are being bench-
marked. We believe that such formalisation will foster
vendor collaboration and public access to the bench-
marking results. In our approach we treat the WfMSs
as a black-box, as the proposed methodology is appli-
cable to any WfMS released as a Docker container.

The remainder of the paper is organized as fol-
lows: Section 2 introduces the benchmarking frame-
work, Section 3 presents the process of formal in-
teraction with WfMS vendors and the used artifacts,
Section 4 examines the related work, and Section 5
concludes and presents the planned future work.

2 Benchmarking Process

To ensure benchmark’s transparency and repeata-
bility, it is crucial to clearly define the benchmarking
process, its input and output artifacts, as well as the
implementation of the benchmarking framework.

2.1 Benchmarking
Input/Process/Output Model

Regardless of the targeted System Under Test (SUT),
the benchmarking process always uses as an input
a workload, i.e, an instance of the workload model,
whose parameters are influenced by the test type. It
is a good practice to explore SUT performance using
different SUT configurations and different computa-
tional resources. The output of the benchmarking pro-
cess is the data for calculating different metrics and/or
Key Performance Indicators (KPIs). Such data should
be recorded only after a warm-up period, necessary to
remove system initialization bias. Before the data can

4More detailed list is provided at: https://en.

wikipedia.org/wiki/List_of_BPMN_2.0_engines

be used for computing metrics and KPIs, it must be
validated, by running the same tests multiple times,
to ensure that the standard deviation in the results is
below a predefined limit. In the following subsections
we define the elements of the Input/Process/Output
(IPO) model (Fig. 1) in the WfMSs context.

2.1.1 Workload Model

The workload model defines the workload which is
used as an input to the SUT, in our case the WfMS.
Its parameters (workload mix, load functions and test
data) vary depending on the objective of the test type
(e.g., load test, stress test, soak test (Molyneaux,
2014)). The interactions between the parameters of
the workload model are presented in Fig. 2.

The workload mix is the mix of process models
to be deployed during a given test. Each process
model defines the activities, the order in which they
are performed, as well as any external interactions.
It is crucial for benchmark’s validity that the work-
load mix is representative of real-world models and
the set of language constructs that they use. Collect-
ing and synthesizing real-world models is one of the
challenges faced when benchmarking WfMS perfor-
mance, to be addressed by static and dynamic analy-
sis of real-world model collections (Pautasso et al.,
2015). Given the fact that the workflow execution
languages are very rich and complex, the constructs
included in the workload mix models need to be care-
fully selected. They should: 1) stress the performance
of the WfMS; 2) be supported by the WfMS (Geiger
et al., 2015); 3) be frequently used in real-world pro-
cesses; and 4) be in-line with the targeted perfor-
mance tests and KPIs. To make sure that our work-
load mix is representative, we will follow the itera-
tive approach for its development and evaluation (Sk-
ouradaki et al., 2015). Since each WfMS uses dif-
ferent serialization of executable process models, ev-
ery time we add a new WfMS to the framework, our
workload mix needs to be transformed to a compati-
ble executable format.

The load functions describe how the workload is
issued to the SUT. For example, in the case of Online

Figure 2: Workload Model Parameters’ Interaction



Transaction Processing (OLTP) systems, the work-
load mix consists of transactions against a database
(DB) and a load function describes the number of
queries that will be executed against the DB per time
unit (Transaction Processing Council (TPC), 1997;
Transaction Processing Performance Council, 2007).
In more complex examples, such as the session-based
application systems, the workload mix is defined
through different types of transactions, and different
roles of users that execute these transactions. In these
systems, the load functions are more complex as they
have to describe the behavior of the users, i.e., the
frequency and sequence in which they execute dif-
ferent types of transactions (van Hoorn et al., 2014).
The workload model for benchmarking WfMSs can
be seen as an extension of the workload model for
session-based applications, since the WfMS executes
blocks of language constructs as transactions which
can be compensated in case of an error. When
benchmarking WfMSs we distinguish two types of
load functions: 1) Load Start Functions - determined
based on the performance test type, they define how
often process instances are being initiated during the
test. Even though a Load Start Function needs to
be defined for each model in the workload mix, it is
possible that multiple or all models share the same
Load Start Function; 2) Load Distribution Functions
- contain rules to define the distribution of the exe-
cuted paths of a given model in the workload mix and
the distribution of the interactions. Examples of such
interactions are the completion of a human (user or
manual) task and the call of an external Web Service.
The rules will be derived from the analysis of real-
world execution logs and based on the test type. There
is mutual dependency between all the instances of a
given process model, and the Load Start Function for
that process model, marked with bidirectional arrow
in Fig. 2. Namely the Load Start Function determines
the number of instances for a given process model in
the workload mix, but at the same time, the Load Start
Function needs to know the process model to be able
to generate the test data necessary to instantiate a pro-
cess instance.

The test data are used as an input for starting a
process instance, or during the execution of the pro-
cess instance as part of the performance test. They
depend on the definition of the load functions and can
refer to, for example, results of evaluating gateway
rules, messages for invoking Web Services, persistent
data required for completing a task, the number of
users, etc.

To summarise: the workload applied to the SUT
is determined by the load functions, used to generate
process instances of all the process models included

in the workload mix. The process instances are in-
stantiated and executed using the test data selected in
accordance with the load functions. For instance, we
could use the process model shown in Fig. 2 as a sim-
plistic workload mix. Consider Task A a human task
and Task B a Web service task. We can define the
Load Start Function, such that, 100 process instances
are started with the initialization event and then exe-
cuted by the WfMS. The test data in this case, would
be the input data that the users are entering into the
WfMS for Task A. The Load Distribution Function
would define users’ think times, and the time it takes
for the Web Service to complete.

2.1.2 System Under Test

The SUT refers to the system that is being tested for
performance. In our case a WfMS which, accord-
ing to the WfMC (Hollingsworth, 1995), includes the
Workflow Enactment Service (WES) and any envi-
ronments and systems required for its proper func-
tioning, e.g., application servers, virtual machines
(e.g., Java Virtual Machine) and DBMSs. The WES
is a complex middleware component which, in addi-
tion to handling the execution of the process models,
interacts with users, external applications, and Web
services. This kind of SUT offers a large set of con-
figuration options and deployment alternatives. The
DBMS configuration as well as the WES configura-
tions (e.g., the granularity level of history logging,
the DB connection options, the order of asynchronous
jobs acquisition), may affect its performance. More-
over, WfMSs often offer a wide range of deployment
alternatives (e.g., standalone, in a clustered deploy-
ment, behind a load balancer in an elastic cloud in-
frastructure) and target different versions of applica-
tion server stacks (e.g., Apache Tomcat, JBoss).

To add a WfMS in the benchmark, we require
the availability of certain Core APIs necessary to au-
tomatically issue the simplest workload to the SUT.
They include: 1) deploy a process and return as a re-
sponse an identifier of the deployed process (PdID);
and 2) dtart a process instance by using the PdID and
return as a response the new instance identifier (PiID).

Depending on the execution language of the
WfMS and the constructs that it supports, other APIs
might be necessary for testing more complex work-
loads. For instance, if we are targeting BPMN 2.0
WfMSs we might also require the following APIs:

For applying workloads involving human tasks,
the following User APIs are necessary: 1) create
a user and return the identifier of the created user
(UsID); 2) create a group of users, return the cre-
ated group identifier (UgID), and enable adding users
by using their UsIDs; 3) pending user/manual tasks:



access all the pending user/manual task instances of
a given user/manual task identified by its id (Jordan
and Evdemon, 2011, sec. 8.2.1) as specified in the
model serialization. We want to obtain all the pend-
ing tasks with the given id of all the process instances
(PiIDs) of a given deployed process (PdID). The API
has to respond with data, enabling the creation of a
collection that maps the process instances to the list
of their pending tasks <PiID, UtIDs> and <PiID,
MtIDs>; 4) claim a user/manual task identified by
UtID/MtID, if tasks are not automatically assigned by
the WfMS; and 5) complete a user/manual task iden-
tified by UtID/MtID by submitting the data required
to complete the task.

To issue a workload containing process mod-
els with catching external events, the following
Event APIs are necessary: 1) pending catching
events/receive tasks: access the pending catching
event/receive task instances of a given event/task
identified by its id (Jordan and Evdemon, 2011, sec.
8.2.1) specified in the model serialization. We want
to obtain all the pending catching events/receive tasks
with the given id of all the process instances (Pi-
IDs) of a given deployed process (PdID). The API
has to respond with data enabling the creation of a
collection that maps the process instances to the list
of their pending catching events/receive tasks <PiID,
CeIDs> and <PiID, RtIDs>; and 2) issue an event to
a pending catching event/receive task identified by us-
ing CeID/RtID. We require the APIs to accept the data
necessary to correlate the issued event to the correct
process instance, e.g., a correlation key.

Finally, to be able to issue a workload defining in-
teraction with Web services and/or containing throw-
ing events, the WfMS has to support a binding mech-
anism to map each Web service task/throwing event
to the corresponding Web service/throwing event end-
point. The WfMS should preferably allow to specify
the mapping in the serialized version of the model.

Since many WfMSs are offered as a service, it is
safe to assume that many WfMSs expose, what we
call, the Core APIs. In our experience with systems
we have evaluated so far (e.g., Camunda, Activiti,
jBPM), they support not only the core APIs, but also
the non-core APIs. The exact API may differ among
systems, however the necessary API features were al-
ways present.

2.1.3 Metrics and Key Performance Indicators

The output of the performance testing is collected
and later used to calculate a set of metrics and KPIs.
To make performance testing meaningful, they must
be carefully selected in order to capture the differ-
ences among configurations and systems. A metric

is defined as a “quantitative measure of the degree
to which a system, component or process possesses
a given attribute” (Fenton and Bieman, 2014). A KPI
on the other hand is a “a set of measures” (Parmenter,
2010, ch. 1) which focus on the critical aspects of
SUT’s performance. As opposed to metrics, the num-
ber of KPIs should be limited, in order to clearly
focus the improvement efforts. We propose group-
ing the metrics and KPIs in three different levels,
based on the requirements of their expected users: 1)
Engine-level: to help end-users select the most suit-
able WfMS as per their performance requirements; 2)
Process-level: suitable for WfMS vendors to position
and evaluate their offerings in different use-case sce-
narios; and 3) Feature-level: fine-grained measures
allowing WfMS developers to deal with system’s in-
ternal complexity and to explore its bottlenecks. For
each level, we enumerate a non-exhaustive set of met-
rics to be calculated using process execution, environ-
ment monitoring and resource utilization data. Which
metrics will be calculated when running a specific
performance test, will depend on the objective of the
test. To increase transparency, a detailed definition of
each of the used metrics will be provided, together
with the benchmark results.

The Engine-level metrics measure the WfMS per-
formance based on the execution of the entire test
workload. Most metrics defined in the literature
for assessing WfMS performance, refer to this level
and include throughput, latency, resource utilization
(e.g., RAM, CPU, disk and network utilization) (Röck
et al., 2014). In addition to these metrics, we pro-
pose to also add metrics for assessing the scalabil-
ity, the capacity (Jain, 1991, p. 123), and the flexi-
bility of the SUT. For example, response time (ms)
- what is the time it takes for the SUT to respond to
the service request (Barbacci et al., 1995, ch. 3), en-
durance - can the SUT sustain a typical production
load (Molyneaux, 2014, p. 51), flexibility to spike -
how does the SUT react to a sudden increase of the
load (Molyneaux, 2014, ch. 3).

The Process-level metrics measure the WfMS per-
formance based on the execution of instances of a spe-
cific process model in the test workload. The resource
utilization metric is interesting at the process-level as
well, to analyse how much resource consumption is
needed per single process instance execution. We also
propose metrics for the duration of a process instance,
and the delay introduced by the WfMS in executing
the process instance. The delay is computed as a dif-
ference between the actual and the expected duration
of the process instance, where the expected duration
is determined as the aggregation of the expected du-
ration of the constructs included in the executed path



of the process instance.
Different languages can support different concepts

(e.g., time, parallelism, control and data flow) impact-
ing the design of the WfMSs executing them. The
Feature-level fine-grained metrics are necessary to de-
termine the impact of specific language constructs or
patterns on WfMS performance, and to isolate possi-
ble sources of performance issues. We propose mea-
suring the resource usage, the duration and the delay
for each language construct as well as for frequently
used patterns5. For instance in BPMN 2.0, such con-
structs can include user task, timer event, exclusive
gateway, etc. The ultimate goal is to help develop-
ers determine the performance bottlenecks of their
WfMS, so that they can work on removing them and
thus improving the WfMS performance in general.

However, being able to calculate the above men-
tioned metrics imposes certain requirements on the
granularity and the type of data to be saved in the
DBMS. The DBMS persists and recovers the process
instance execution status and history. The most im-
portant data to be recorded are the following times-
tamps: start time and end time of each executed pro-
cess instance (identified by its PiID); as well as start
and end time of specific language constructs that are
part of the process instances, e.g., activities or events
identified by their id with a possibility to map them to
the process instance they belong to. The timestamps
should preferably have a precision up to milliseconds.

2.2 Benchmarking Framework
Implementation

The goal of the benchmarking framework is twofold:
1) to make our research publicly available, and fos-
ter collaboration; and 2) to enable reproducibility and
full transparency in the benchmarking process. The
second goal is very important for inducing WfMS
vendors to join our efforts, since it enables them to
verify the benchmark results and use the framework
with their own infrastructure.

The framework builds on: 1) Faban (Faban,
2014), an established and tested “performance work-
load creation and execution framework”, to de-
sign the load drivers and issue the load; and 2)
lightweight software containerization technologies,
precisely Docker (Turnbull, 2014) in the current ver-
sion of the framework, in order to obtain, from the
vendors, a ready to use setup of the WfMSs to be
tested. We have decided to adopt Docker since it
is a widely used and accepted containerization solu-
tion (Merkel, 2014). Moreover, if carefully config-

5
http://www.workflowpatterns.com

ured, it has proved to have a negligible impact on the
performance of the containerized application (Felter
et al., 2014). The benefits of using containerization
technologies are: 1) avoiding the highly error-prone
task of installing the WfMS that can lead to a non op-
timal setup impacting its performance results; 2) en-
suring the reproducibility of the benchmark results by
saving system’s initial status (Boettiger, 2014); and 3)
collecting detailed resources usage statistics for each
Container by means of the Docker stats API.

Fig. 3 presents the framework components and
their deployment. Each of the framework’s compo-
nents is deployed inside a different Container. Al-
though we use Docker as a containerization technol-
ogy, the proposed methodology and framework can
be applied to any other containerization technology
as well. To scale with the amount of performance
tests to be included in the benchmark, in order to pro-
vide for a reliable comparison of WfMSs, we inte-
grate the deployment of the WfMS in the setup of the
performance test. We do so by using a SUT Deploy-
ment Descriptor and by extending the Faban Master
in the Benchmark Master. The SUT Deployment De-
scriptor defines the servers on which to deploy the
WfMS’s Containers. The Benchmark Master auto-
matically deploys the SUT as well as the workload,
and all the related entities defined in the load func-
tions, i.e., the Load Start Functions, users and appli-
cations which are simulated by means of Faban Driver
Agents; and the Web services which are simulated
by using techniques for automatic testbed generation
(e.g., (Juszczyk et al., 2008)). The main deployment
requirement for a reliable benchmark is to isolate, as
much as possible, the WES from other components,
by deploying them on different physical machines on
the same local network, with the purpose of minimis-
ing the possible noise introduced by their concurrent
execution on the same machine (e.g., the DBMS run-
ning on the same machine as the WES). To do so, the
framework enables the user to select the servers where
to deploy the SUT, so that there are enough computa-
tional resources to generate a load that stresses the
WfMS performance, and enough computational re-
sources for the WES to sustain that load. Less pow-
erful servers are used to run the WES, while the load
functions and the DBMS are assigned to more power-
ful servers. While enhancing the reliability of the ob-
tained results, deploying the components on different
physical machines adds network costs to the systems.
We mitigate these costs by connecting the different
servers on a high performance local network.

The framework also deals with the asynchronous
execution of process models, by gathering perfor-
mance data directly from the DB used by the WES.



Figure 3: Framework Deployment View

Data cannot be gathered from the client side since the
starting of a new process instance from the Core API
is done in an asynchronous way. This means that the
Core API call to the WfMS finishes as soon as the in-
stance is created, and the Load Start Function is only
aware of the start time of a process instance, while
the end time needs to be obtained directly from the
DB. The framework also ensures that the conditions
of the environments that host the WfMS are suitable
for benchmark execution (e.g., there are neither inter-
ferences from other running applications nor bottle-
necks in the underlying hardware) by using measure-
ments collected from all the WfMS Containers.

3 Formal Interaction and Artifacts

Although a carefully designed framework can lead
to a benchmark that systematically satisfies the afore-
mentioned desired properties, its industry acceptance
is not always a straightforward process. To address
this issue, in addition to the technical framework, as
part of our methodology, we also propose a process
of formal interaction with WfMS vendors (Fig. 4). Its
main purpose is to enhance the transparency of the
overall benchmarking process, while promoting the
engagement of WfMS vendors. The interaction can
be initiated either by the benchmarking team or by
the WfMS vendor. Fig. 4 depicts only the desired
path. If the vendor decides not to participate in the

benchmark, we can still run tests on its WfMS and
publish only anonymised results in research papers,
provided it is not prohibited by its licence agreement.
The rest of this section describes in detail the artifacts
exchanged or produced during the benchmarking pro-
cess.

3.1 Agreement with Vendors

After the vendor becomes familiar with the proposed
benchmarking methodology, its WfMS can only be
included in the benchmark after a written agreement
is signed. The agreement precisely defines the rights
and obligations of both parties: the vendor and the
benchmarking team. The main concerns the vendor
needs to agree on are:
• defining which versions of the WfMS will be in-

cluded in the benchmark. Such versions need to
be a production stable release of the system and
provide the APIs described in Subsection 2.1.2.

• providing the benchmarking team with a con-
tainerized WfMS for each version to be included
in the benchmark, or providing WfMS’s installa-
tion guide and configuration details to enable the
benchmarking team to prepare the containerized
WfMS;

• making the containerized WfMS publicly avail-
able on a Container registry;

• authorizing the benchmarking team to publish the
obtained results on its website and in research pa-
pers using WfMS’s name, after the vendor verifies
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Figure 4: Benchmarking Methodology Choreography

their correctness.
The framework will be publicly available for free

use for non commercial purposes, however with lim-
ited analytics functionalities. Full analytics and dif-
ferent workload models will be available to vendors
which sign the agreement and include their WfMS
in the benchmark. Thus they would benefit from de-
tailed insights to possible causes of performance bot-
tlenecks, and performance comparisons to competi-
tors’ products or to previous versions of their own
product. Namely they could integrate the benchmark-
ing framework in their performance regression testing
framework, in addition to their continuous improve-
ment efforts.

3.2 Containerized WfMS

As discussed in Section 2.2, we deploy the WfMS
components in different Containers. To isolate the
WES from other components, to access relevant data,
and to formalize WfMS configuration parameters,
we define some requirements for the containerized
WfMS. The vendor should provide at least two sep-
arate Containers, one for the WES and one for the
DBMS. The DBMS Container can refer to an existing
publicly available Container distributions. The con-
tainerized WfMS must be publicly available (e.g., at
the Docker Hub registry6). The same applies to the
Containers’ definition file, i.e., the Dockerfile (Turn-
bull, 2014, ch. 4). For each WfMS version to be in-
cluded in the benchmark there must be a default con-

6
https://hub.docker.com/

figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables7, and/or by
specifying the volumes to be exposed8 in order to ac-
cess the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However even in that case the DB configu-
ration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to

7
https://docs.docker.com/reference/run/

#env-environment-variables

8
https://docs.docker.com/

userguide/dockervolumes/

#mount-a-host-directory-as-a-data-volume



setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g. the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

3.3 Draft Benchmark Results

The draft benchmark results delivered to the WfMS
vendor consist of two important sets of information:
1) information necessary for replicating the perfor-
mance tests, i.e., input and configuration data. They
include description of the type of tests that have been
run accompanied by all the necessary input for run-
ning them, i.e., the parameters of the workload model
and the workload as described in Subsection 2.1.1.
They also include data regarding the environment set-
up and deployment and WfMS configuration; and 2)
information and data regarding the metrics and KPIs
calculated with the framework, both in terms of pre-
cise definition of their calculation and purpose, as
well as, in terms of the results of their calculation and
possibly interpretation of the same. If the calculation
of certain metrics/KPIs is not possible, due to lack of
data or system support of given language constructs,
the status of the metric calculation attempt will be
provided in the draft results, together with an expla-
nation of its meaning. The raw performance data, as
obtained during the execution, will also be included
in the draft results, to enable WfMS vendors to calcu-
late additional metrics not provided in the framework,
should it be necessary.

If the WfMS vendors have agreed on including
different versions or configurations of their product in
the benchmark, they would receive draft benchmark
results for each version/configuration. This would
enable them, for example, to draw conclusions on
how different configurations impact the performance
of their product and, if necessary, change their de-
fault configuration with a better performing one. They
could also control benchmark’s website for published
results from other WfMS vendors to understand their
product’s market position.

3.4 Verified Benchmark Results

After receiving the draft benchmark results, the ven-
dors can validate their correctness by replicating the

tests and comparing the obtained results. Ideally, no
significant differences should be noticed in the results
when replicating the tests using the same environment
and workload the benchmarking team had used to per-
form the initial tests. However should such differ-
ences be identified, the vendor has to report them to
the benchmarking team who is obliged, by the agree-
ment, not to publish results unless they have been ver-
ified for correctness by the vendor. Iterative approach
will be followed, as evident in Fig. 4, until the results
have been verified and thus authorised for publishing
at benchmark’s website and in research papers. Rea-
sonable time for verification of draft results will be
defined in the agreement as per discussion with the
vendors.

4 Related Work

To the best of our knowledge, this is the first work
proposing a Container-centric benchmarking frame-
work, and providing a full methodology for bench-
marking WfMSs. There have been various efforts to
outline structured frameworks for the description of
benchmarking methodologies applied to diverse ap-
plications and environments. Iosup et al. introduce
a generic approach for Cloud benchmarking, discuss
the challenges in benchmarking Cloud environments,
and summarize experiences in the field (Iosup et al.,
2014). They also propose a benchmarking tool, Sky-
Mark, for workloads based on the MapReduce (Dean
and Ghemawat, 2008) model. Baruwal Chhetri et
al. propose Smart CloudBench (Chhetri et al., 2015),
a platform for automated performance benchmark-
ing of the Cloud. Both of these references propose
Infrastructure-as-a-Service (IaaS) benchmark, thus
they do not deal with the challenges introduced by
benchmarking applications (e.g., the need of an agree-
ment with vendors). Shikhar (Puri, 2008) presents
the challenges in benchmarking applications, and ac-
knowledges that the benchmarking process requires
extensive planning and thus a well defined methodol-
ogy. While the aim of the mentioned papers is similar
to ours, i.e., to formalize a benchmarking process for
emerging technologies and attract industry attention
to give feedback and share experiences, the focus is
different. In our work we focus on benchmarking a
precise middleware, the WfMS.

SPEC and TPC propose a different approach in
benchmarking software systems. Their approach can
be seen as complementary to the one proposed by us,
since it allows the vendors to execute the benchmarks
on their own hardware and send back the results. The
SPEC/TPC committees verify internally the correct-



ness of the results before publication on their website.
Their approach has demonstrated to be effective when
a standard benchmark is well defined. Currently we
are working on defining such a standard benchmark
for WfMSs, thus at this phase, we believe that feed-
back from different vendors through validation of in-
ternally calculated results, might be more effective.

The need to benchmark WfMSs is frequently dis-
cussed in literature (Wetzstein et al., 2009; Russell
et al., 2007). Gillmann et al. (Gillmann et al., 2000)
compare the performance of a commercial WfMS
with the one developed by the authors, by using a
simple e-commerce workflow. The benchmark mea-
sures the throughput of each of the systems as well
as the impact of the DB work that is forwarded
to a dedicated server. Bianculli et al. propose a
more systematic approach in the SOABench (Bian-
culli et al., 2010b), where they tackle the automatic
generation, execution and analysis of testbeds for
testing the service-oriented middleware performance.
That framework is used to compare the response time
of several Web Services Business Process Execu-
tion Language (WS-BPEL) WfMSs, i.e., ActiveVOS,
jBPM, and Apache ODE (Bianculli et al., 2010a),
when using a different number of clients and differ-
ent think times between subsequent requests. The re-
sults have pointed to some scalability limitations of
the tested systems.

The limitations of the above projects, and other
work in the area (Röck et al., 2014; Skouradaki et al.,
2015; Daniel et al., 2011; Ferme et al., 2015) lie
in the fact that 1) they target a small number of
WfMSs; 2) their workload mix consists of simple,
non-representative processes; 3) their performance
tests are limited to, e.g., response time, or load testing;
4) the performance metrics and KPIs used are not fo-
cused on WfMS, but on software systems in general;
and 5) they focus on benchmarking framework archi-
tecture, while ignoring the methodological issues dis-
cussed in this paper. Thus they do not satisfy the re-
quirements of standard benchmarks, but can be seen
more as custom benchmarks. Our methodology aims
at addressing these limitations, while being applicable
on different industry use cases.

There are many commercial and open-source per-
formance framework solutions (Molyneaux, 2014),
some dedicated to generic web applications (Fa-
ban, 2014; The Apache Software Foundation, 2015;
SmartBear, a), and others to specific middleware per-
formance testing (Li et al., 2009; SmartBear, b).
However none of them refers specifically to WfMSs.
Hence this paper aims at filling that gap by offering
an open-source solution.

5 Conclusion and Future Work

Benchmarking is a widely accepted approach to
assess the current state of a technology and drive its
performance improvement (Sim et al., 2003), pro-
vided that it meets the main requirements of rele-
vance, trustworthiness, and reproducibility. To ad-
dress these requirements, in this paper, we propose
a framework which takes advantage of Docker Con-
tainers and Faban. They enable the automatic and reli-
able benchmarking of different WfMSs, as long as the
latter expose suitable APIs for process model deploy-
ment, instance execution and monitoring. The actual
performance metrics are collected and processed of-
fline, after the workload has been completely issued in
accordance with the corresponding workload model.
By exploiting containerization technologies, we also
deal with some of the logistic challenges in handling
the interaction with WfMSs vendors. To enhance the
transparency, our methodology: 1) clearly defines the
interaction between the benchmarking team and the
vendors and formalises it by means of a written agree-
ment; 2) allows the vendors to provide configured
WfMS Containers for each version to be included in
the benchmark, as well as for each configuration al-
ternative; 3) defines a verification process in which
the vendors can access the draft benchmark results,
as well as all the configuration parameters for auto-
matic execution of the tests, in order to validate their
correctness.

We have started applying the methodology with
some open-source WfMSs, which is driving the
further development of the complete benchmarking
framework that will be released as an open-source.
This will enable interested vendors to apply the
framework following the methodology defined in this
paper to obtain their performance benchmark results.
Only then we will be able to provide a full valida-
tion of proposed methodology’s capabilities for real-
world benchmarking and a definition of KPIs capable
of rightfully reflecting the differences in performance.
For the time being, the approach described in this pa-
per has been approved as sound by the management
of the Activiti BPM Platform9.
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