
Performance Comparison Between BPMN 2.0
Workflow Management Systems Versions

Vincenzo Ferme?,1, Marigianna Skouradaki2, Ana Ivanchikj1, Cesare Pautasso1,
and Frank Leymann2

1 Faculty of Informatics, USI Lugano, Switzerland
2 Inst. of Architecture of Application Systems (IAAS), Univ. of Stuttgart, Germany

Abstract. Software has become a rapidly evolving artifact and Workflow
Management Systems (WfMSs) are not an exception. WfMSs’ changes
may impact key performance indicators or resource consumption levels
may change among different versions. Thus, users considering a WfMS
upgrade need to evaluate the extent of such changes for frequently issued
workload. Deriving such information requires running performance ex-
periments with appropriate workloads. In this paper, we propose a novel
method for deriving a structurally representative workload from a given
business process collection, which we later use to evaluate the performance
and resource consumption over four versions of two open-source WfMSs,
for different numbers of simulated users. In our case study scenario the
results reveal relevant variations in the WfMSs’ performance and resource
consumption, indicating a decrease in performance for newer versions.

Keywords: Performance Testing · Performance Regression · BPMN · Workflow
Management Systems · Workflow Engine

1 Introduction

In the era of rapidly evolving software, semantic versioning has introduced a
standardized meaning for version numbers. While this versioning style conveys
the extent of changes introduced with the new version, in terms of backward
compatibility, new features or bug fixes; it fails to provide information regarding
changes in system’s performance. This holds for Workflow Management Systems
(WfMSs) as for any other software. As the number of proprietary and open-source
WfMSs increases, measuring and comparing their performance between different
versions becomes imperative for continuously improving them [18]. Information
on the performance and/or resource consumption differences between versions is
not only relevant for the developers, but is also important for the decision-making
regarding the upgrade or selection of a WfMS by the end users. Especially, when
the WfMS is running in the Cloud.

However, WfMSs’ performance does not only depend on its version, but also
on the workload (i.e., the workload mix, load function and test data) applied to

? Corresponding author

the System Under Test (SUT). The end user requires performance information
related to a given workload mix, i.e., the mix of Business Process (BP) models,
which is structurally representative of a possibly large BP collection and related
to a representative load function, which describes how the workload mix is issued
to the WfMS. To address this challenge, we define and follow a novel method for
deriving a synthetic workload mix from a given BP models collection. We focus on
the Business Process Model and Notation (BPMN 2.0) [8] as a common modeling
and execution language, since it allows to use a uniform standard representation
for the workload mix.

As a case study, we apply the proposed method to derive a structurally
representative workload mix from a real-world collection, which we then use
to execute performance tests on the process navigator of two different popular
open-source WfMSs. The process navigator is a core component of the WfMSs,
that is responsible for navigating through the control flow of the BP models [7].
For each of the WfMSs, we test and compare the last four minor versions using
the reliable BenchFlow environment [4]. Hence, the scientific contributions of this
work are: 1) a method for deriving a structurally representative workload mix,
and 2) an extensive analysis of the results from applying the proposed method
on a case study scenario, providing insights on the evolution of two WfMSs in
terms of performance and resource consumption.

The rest of this paper is structured as follows: Sect. 2 presents the method for
generating a representative workload model; Sect. 3 refers to the configuration
of the performance testing environment and the WfMSs; Sect. 4 presents and
discusses the results from the case study; threats to validity are addressed in
Sect. 5 and related work in Sect. 6. We conclude the paper and present plans for
future work in Sect. 7.

2 Defining a Representative Workload Model

In previous work [5], we have identified the WfMS workload model components
and their interactions. Failing to derive a workload model which is representative
of a given initial BP model collection might produce misleading results and hence
inappropriate decisions [3]. Therefore, in this section we present a parametric
method for generating such workload model. Consequently, instead of using
arbitrary BP models in performance tests, companies may generate synthetic
BP models that reflect the essence of their BP models collection. The advantage
of applying a parametric method for the workload mix generation, is that it
enables a future re-application on diverse BP collections and/or domain-specific
requirements. Then, we also discuss the parametric definition of the load functions.

2.1 Workload Mix Generation Method

For deriving BPs with representative structures we propose the following four
phased workload mix generation method : Phase 1) Analyze the initial BP model

collection; Phase 2) Discover the reoccurring structural patterns; Phase 3) Syn-
thesize the BPs of the workload mix with respect to user defined parameters; and
Phase 4) Partition the BPs into workload classes. The workload mix generation
method takes as an input a collection of real-world BPs. In Phase 1 we apply
statistical analysis on that collection to identify its main structural characteristics.
Moreover, we execute clustering analysis based on the BPs’ static metrics (e.g.,
number of activities, number of gateways) to obtain additional insight on the
collection’s characteristics. Clustering analysis is a grouping method that places
similar objects in the same group (i.e., cluster). In Phase 2 we proceed to the
detection and extraction of the most frequently reoccurring structural patterns
in the BPs of the collection via the RoSE algorithm [16]. The detected patterns
are extracted and annotated with their frequency of appearance in the original
collection, as well as other metadata regarding their structure. The extracted
structures and their metadata are then used in Phase 3 for recognizing and
synthesizing [14] representative BPs, in accordance with user-defined parameters,
such as the size and the control flow characteristics of the synthesized BPs, which
can be derived from the statistical and clustering analysis. Graph synthesizing
has been previously used (e.g., by Gupta [6]). However, this is the first time that
parametric generation of representative BPs out of reoccurring structures is used
for performance testing. Finally, in Phase 4 we divide the BPs into workload
classes. A workload class is the pair of BP and intensity with which each BP
participates in the workload mix. Thus, the workload mix is comprised of the
different workload classes used as input to the SUT [5]. Each class participates
in the workload mix with a different intensity, which corresponds to the degree
of the model’s representativeness of the collection.

Let us assume a set C = {c1, c2, ..., ck}, k ∈ N of BP models that we include
in the classes of the workload mix. In our case the set C maps to the BP models
shown in Fig. 1 to 5. For calculating the representativeness repr of a BP model
(ck ∈ C) to the collection we define the following formula:

repr(ck) =
1

2 |Sk|
∑

si∈Sk

(
t(si)

|Sc|
+

m(si)

|M |

)
(1)

where:

M = {m1,m2, ...,mj} is the set of BP models in the original collection.
Sc = {s1, s2, ..., sn} is the collection of all the reoccurring structures si detected

in the original BP models collection M . A given structure si can reoccur
multiple times within the same mi ∈ M , and/or in different models in M ,
and thus multiple times in the collection Sc.

Sk ⊂ Sc is the set of reoccurring structures participating in the BP model ck.
t : Sc→ N is a function counting how many times a structural pattern si ∈ Sc

is present in all mi ∈M , counting each time si is found in the same mi.
m : Sc→ N is a function returning the number of BPs in the set M , in which

the structural pattern si ∈ Sc is present at least once.

The intensity is then computed as the normalized representativeness (repr(ck),
Eq. (1)) with respect to the whole collection.

class1_new

Empty
CA1

Empty
CA2

Generate
Ν1ST1

Ν1 == 1

Ν1 == 2

Fig. 1: Class 1: s1, Cluster 1

class2

Empty
CA1

Empty
CA2

Generate
Ν1 ST1

Ν1 == 2

Ν1 == 1

Fig. 2: Class 2: s2, Cluster 1class3

Generate
Ν1 ST1

Empty
CA4

Empty
CA1

Empty
CA2

Empty
CA3

Empty
CA5

Empty
CA6

Ν1 == 1

Ν1 == 2

Fig. 3: Class 3: s3, Cluster 2
class4

Generate
Ν1 ST1

Empty
ST1

Empty
ST4

Empty
ST2

Generate
N2 ST2

Empty
ST5

Empty
ST6

Empty
ST7

Empty
ST8

Empty
ST9

Empty
ST10

Empty
ST11

N2 == 1

N2 == 1

N2 == 2

N2 == 2

N1 == 1

N1 == 2

Fig. 4: Class 4: s3 + s4, Cluster 3
class5

Generate
N1 ST1

Generate
N2 ST2

Generate
New

N1 ST1

Empty
ST3

Generate
New

N2 ST2

Empty
ST1

Empty
ST2

Empty
CA6

Empty
CA7

Empty
CA8

Empty
CA5

Empty
CA1

Empty
CA2

Empty
CA3

Empty
CA4Generate

New
N2 ST3

Ν2 == 1

Ν2 == 2

N1 == 2

Ν1 == 1

Ν1 == 2

Ν1 == 1

Ν2 == 2

Ν2 == 1

Ν2 == 1

Ν2 == 2 ST: Script Task
CA: Call Activity

Fig. 5: Class 5: s5 + s6, Cluster 4

2.2 Applying the Workload Mix Generation Method

Phase 1: To create a case study scenario, we use a collection of 3’247 valid and
complete real-world BPMN 2.0 BPs originating from: i) IBM Industry Process
and Service Models3, ii) sample models provided by the BPMN 2.0 standard,
iii) the research by Pietsch et al. [12], iv) the BPM Academic Initiative4 (invalid
and incomplete BP models were removed) and v) other research and industrial
partners. The diversity of our collection reflects companies with a big portfolio
of different processes and results in a more “general” synthetic workload. Since
event logs or real data to simulate the BP execution were not shared with
us, a behavioral analysis of the example collection was not possible at this
point. In the collection, the BP size ranges from 3 to 120 nodes. Models with size
5 6 size 6 32 represent 82% of the collection. Despite BPMN 2.0’s expressiveness,
the detected reoccurring structures contain only a small subset of the BPMN 2.0

3 http://www-01.ibm.com/software/data/industry-models/
4 http://bpmai.org/

http://www-01.ibm.com/software/data/industry-models/
http://bpmai.org/

Table 1: Occurrences of appearance (t within the structures, m within the BPs)
of the reoccurring structures and their intensity (c.f., Eq. (1))

Class 1 Class 2 Class 3 Class 4 Class 5
si s1 s2 s3 s3 s4 s5 s6
t(si) 1’602 953 640 640 309 130 30
m(si) 1’731 2’303 1’710 1’710 635 157 30
Intensity 39% 27% 19% 13% 2%

constructs. More than 95% of the elements are one of the following: Call Activity,
Exclusive/Parallel/Inclusive Gateway, Task (Script, User, Receive, Send), or
Start and End Event. This confirms the findings of earlier literature studies [11].
The performed clustering analysis resulted in six clusters of gradual complexity.
This result is important to better characterize the collection, and in our use case
it is used as input parameter for Phase 3. The first four clusters represent 94%
of the collection, while the last two the remaining 6%. Therefore, we consider
the first four clusters to be the most representative of the collection’s structure:

Cluster 1: 1 Start, 2 End Events, 4 Activities, 1 Ex. Gateway

Cluster 2: 1 Start, 2 End Events, 6 Activities, 2 Ex. Gateways

Cluster 3: 1 Start, 3 End Events, 11 Activities, 4 Ex. Gateways, 1 Par. Gateway

Cluster 4: 1 Start, 3 End Events, 16 Activities, 5 Ex. Gateways, 1 Par. Gateway

Phase 2: The RoSE algorithm [16] is a novel algorithm that applies techniques
of sub-graph isomorphism to detect reoccurring structural patterns in a collection
of BP models. For the aforementioned collection of BP models it detected 143
structural patterns appearing more than once in the collection.

Phase 3: The clusters indicate the structural attributes a BP should have,
while the detected recurring structural patterns indicate their control flow. The
combination of these results helps us to parametrize the workload mix generation
by controlling the structural characteristics of the produced synthetic BP model
(e.g., the number of constructs per type of construct). Namely, the parameters are
formed with respect to the results of the clustering analysis. After the synthesis
we obtain the representative BPs shown in Fig. 1 to 5. The times (t(si)) and
BPs (m(si)) of occurrence of the participating structures are shown in Table 1.
To obtain fully automated executable models, we implement all tasks as script
tasks or call activities. We omit external interactions (i.e., human tasks and web
service invocations) in order to focus on the observation of the performance
of one of WfMS’s critical components, i.e., the process navigator. Additionally,
the original collection had low ratio of intermediate and boundary events (i.e.,
at most 5 occurrences in the whole collection), thus they are not included in
the synthesised BPs. Empty script tasks are used, except when they precede
an exclusive gateway, in which case the script task generates random numbers
producing a uniform probability of taking any outgoing control flow branch of
the exclusive gateway. Call activities call an empty BP (Start event - Empty
Script Task - End Event).

Phase 4: Finally, we divide the derived BPs into classes (ck) and compute
their corresponding intensity (cf. Table 1).

2.3 Load Function

The interactions with the WfMS needed to start new BP instances follow the load
function defined by different parameters: the set of workload classes to be started
with the given intensity ; a ramp-up period (30 sec) during which the number
of instantiated BP instances is gradually increased, followed by a steady state
(10 min), where the number of instantiated BP instances remains stable, and a
ramp-down period (30 sec), during which the number of instantiated BP instances
is gradually decreased; a variable number of simulated users; and a think time [9]
of 1 sec. Such short think time leads to a load function that stresses the WfMSs
depending on the number of concurrent users. To reflect realistic number of users
interacting with a WfMS in differently sized companies5, we parametrize and
issue the defined load function by setting 50, 500 and 1′000 simulated users in
three different experiments. All parameters of the load function, are configurable
by the designer of the performance test.

3 Case Study Settings

The WfMSs’ configuration and the setup of the performance testing environment
aim at reducing, as much as possible, the noise in the measurements. To that
end we isolate the individual testing components through containers [5] and
control the testing environment to ensure the absence of interferences in the
measurement. For the tests, we used the same methodology as in [15] and run
the experiments with the BenchFlow environment [4], an end-to-end framework
for WfMSs’ performance testing relying on Docker6. BenchFlow aims at ensuring
reliable and reproducible results, that can be verified by means of dedicated
statistics, reported in Sect. 4.2.

The WfMSs we tested are two widely used open source engines7. They are
widely used in industry and have a large user community as per vendors’ websites.
We cover their last two years of development (2014-2016), i.e., versions 7.2.0,
7.3.0, 7.4.0, 7.5.0 for WfMS A and versions 5.18.0, 5.19.0.2, 5.20.0, 5.21.0 for
WfMS B. Comparing versions provides insights on how system’s evolution impacts
its performance. For WfMS A we used the official Docker images and vendor
suggested configurations. WfMS B’s default configuration has been reported as
insufficient for the deployment of realistic loads, thus we used the one suggested at
the vendor’s website. We deployed it using the most popular Docker image, since
no official Docker image is currently available. The configurations of WfMS A and
WfMS B are comparable in terms of the connection pool, the Java Virtual Machine
and the Application server settings they rely on, as well as, in terms of the BP
execution logging level, which we set to log the full history. Both WfMSs utilize
MySQL Community Server 5.7.15 as Database Management System (DBMS),
installed in a Docker container8.
5 http://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses/
6 https://www.docker.com
7 We do not have an explicit vendors’ consent to publish WfMSs’ names
8 https://hub.docker.com/_/mysql/

http://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses/
https://www.docker.com
https://hub.docker.com/_/mysql/

The WfMS and the DBMS run on two exclusively dedicated servers connected
via a dedicated 10 Gbit/s network, without relying on the Docker network bridge
(i.e., we use the Docker’s host network option). The WfMS dedicated server has
64 Cores (2 threads) and a clock speed of 1’400MHz mounting 128GB of RAM
and a magnetic disk with 15’000 rpm. The DB dedicated server has 64 Cores (2
threads) and a clock speed of 2’300MHz mounting 128GB of RAM and a SSD
SATA disk. The aim of such resource allocation is to avoid the DBMS becoming
a performance bottleneck. Different machines, interacting with the WfMS on a
second dedicated 10 Gbit/s network, are allocated for the simulation of the users,
thus ensuring sufficient resources for simulating the defined load.

4 Evaluation

4.1 Performance Metrics

We characterize WfMSs’ performance, using metrics that represent the perfor-
mance from different points of view: 1) the client (i.e., representing the users
starting BP instances), 2) the BP execution behavior, and 3) the system’s resource
consumption. To ensure results’ reliability, given the non-determinism in WfMS’s
performance, we perform three rounds of executions for each experiment. Out
of these multiple rounds, we compute aggregated metrics representing WfMS’s
observed behavior and the performance variability across different rounds.

On the client-side we include the number of requests per second - #REQ/s
issued by the simulated users. The maximum expected #REQ/s equals the
number of simulated users defined in the load function. The actual obtained
value is impacted by the WfMS’s response time. We report the #REQ/s metric
aggregated using the average (avg) of the metric across the different rounds, as
well as the 95% T-based confidence interval (ci) [10, Chap. 8]. The ci sets up a
range of values for the analyzed metric in which we can be 95% confident.

A second set of metrics are computed starting from the server-side performance
data logged by the WfMSs. In this work we include the BP instance (bpi) duration
in milliseconds - D [ms] and the throughput - T [#bpi/s]. The duration D is
defined as the time interval between the start and the completion of a BP
instance. We report the weighted average (wavg(D)) of D aggregated among all
the executed BP instances and for each single BP in the workload mix, where
we compute the weights based on the number of executed BP instances in each
round. As throughput T we define the number of executed BP instances per
second. We report its average (avg(T)) along with the corresponding ci.

We also compute resource consumption metrics, based on data with a sampling
interval of 1 second. In this work, we include the weighted average of CPU, RAM
consumption - wavg(CPU) [%], wavg(RAM) [MB] among different rounds. The
weights are based on the number of CPU and RAM data points in each experiment
round. Given the logged execution data, when necessary other metrics can be
defined by the performance test designer depending on its goal.

Table 2: Performance and Resource Consumption Metrics - WfMS A
WfMS A

Load 7.2.0 7.3.0 7.4.0 7.5.0

Client-side avg(#REQ/s) ±ci
50 49.13±0.04 49.17±0.03 49.16±0.02 49.09±0.01

500 484.87±0.39 486.44±0.10 484.84±0.82 482.91±2.20
1’000 890.84±4.82 879.15±9.94 859.81±3.42 763.46±2.17

Server-side

avg(T) ± ci [#bpi/s]
50 118.23±0.21 119.72±0.17 120.08±0.79 120.05±0.42

500 1’185.12±0.45 1’185.56±0.33 1’180.80±4.34 1’175.10±0.58
1’000 2’121.35±6.23 2’130.90±9.50 2’087.26±2.72 1’849.88±5.17

wavg(D) [ms]
50 1.03 1.08 1.12 1.24

500 0.87 0.91 1.07 1.14
1’000 0.93 0.99 1.05 1.15

Resource
Consumption

wavg(CPU) [%]
50 1.66 1.33 1.33 1.35

500 8.07 6.26 7.03 6.95
1’000 11.39 8.33 8.81 8.79

wavg(RAM) [MB]
50 637.28 590.82 634.79 648.67

500 885.10 860.70 886.53 866.37
1’000 970.61 957.47 978.97 971.43

bpi

Server-side wavg(D) [ms]

Class 1 1.09 1.14 1.24 1.35
Class 2 1.34 1.41 1.54 1.67
Class 3 2.31 2.43 2.64 2.88
Class 4 1.13 1.20 1.30 1.42
Class 5 1.93 2.03 2.21 2.40

4.2 Reliability of Results

To ensure reliable results, we use Little’s Law to verify that the BenchFlow
environment was able to simulate the number of defined users. It compares the
number of defined users versus the number of actually simulated users. BenchFlow
was able to simulate the number of users defined in the load functions, with an
acceptable small variation of less than 1% (at maximum).

Every software system experiences a warm-up time during which its transient
behaviour differs from the one in the steady-state [9]. To account for it, we
identify the outlier BP three instances during the ramp-up phase of the load
function, and remove them from the analyzed data set. To verify that the three
rounds obtain similar, and reliable results, we compute the coefficient of variation
- cv [%]. The cv is the ratio between the standard deviation of the means of
the rounds and the mean of all the rounds, expressed as a percentage. The cv
resulted always below 3.5%. This indicates a stable behavior across the different
rounds.

4.3 Results

The performance metrics (cf. Sect. 4.1) for all tested versions of WfMS A and
WfMS B, with different number of users are reported in Table 2 and 3 respectively.

WfMS A’s ability to handle incoming requests, depicted by the average
requests per second, is close to the expected for 50 and 500 simulated users, with
actual numbers of over 49 and over 482 requests per second respectively. With
1’000 users the client-side performance drops from 890.84 REQ/s in v7.2.0 to
763.46 REQ/s in v7.5.0. There is a slight increase in throughput from 118.23 bpi/s
to 120.05 bpi/s from the oldest to the newest version analyzed for 50 users. For

Table 3: Performance and Resource Consumption Metrics - WfMS B
WfMS B

Load 5.18.0 5.19.0.2 5.20.0 5.21.0

Client-side avg(#REQ/s) ±ci
50 48.84±0.02 48.72±0.05 48.66±0.03 48.65±0.04

500 488.61±0.12 487.72±0.13 487.34±0.15 487.71±0.55
1’000 906.10±3.81 900.14±4.09 891.62±1.76 885.80±2.97

Server-side

avg(T) ± ci [#bpi/s]
50 119.87±0.07 119.82±0.09 119.99±0.09 119.82±0.14

500 1’161.88±0.98 1’160.46±1.13 1’160.96±1.67 1’132.92±2.43
1’000 2’182.78±8.25 2’202.37±6.37 2’189.36±4.83 1’974.01±10.59

wavg(D) [ms]
50 6.53 6.75 6.90 7.19

500 5.08 5.27 5.56 5.65
1’000 5.18 5.34 5.39 5.43

Resource
Consumption

wavg(CPU) [%]
50 3.01 1.59 1.63 1.66

500 8.82 7.55 9.59 9.50
1’000 12.05 12.74 12.78 11.84

wavg(RAM) [MB]
50 1’764.83 2’430.69 2’620.57 2’455.11

500 8’686.66 8’653.84 8’633.66 8’583.11
1’000 9’549.54 9’749.74 9’509.81 9’350.82

bpi

Server-side wavg(D) [ms]

Class 1 9.28 9.52 9.79 10.02
Class 2 6.09 6.24 6.42 6.57
Class 3 16.73 17.16 17.64 18.06
Class 4 3.53 3.62 3.73 3.81
Class 5 22.49 23.07 23.72 24.28

500 and 1’000 users the best throughput of 1’185.56 bpi/s and 2’130.90 bpi/s
respectively is achieved with v7.3.0. There is a reduction to 1’175.10 bpi/s and
1’849.88 bpi/s respectively in v7.5.0, the newest version. Given that most of the
BPs used in the workload mix contain call activities which instantiate a globally
defined BP, the throughput is much higher than the actual number of requests
per second sent by the users, because it considers the instantiated BP instances
as well. The average duration of the execution of one BP instance is the lowest
in v7.2.0 for 500 users with 0.87 ms execution time, and the highest in v7.5.0
for 50 users with 1.24 ms execution time as it increases with newer versions
of the WfMS. The same applies to the average duration at BP level (rolled-up
by the number of users), with lowest duration of 1.09 ms for Class 1 in v7.2.0,
and highest of 2.88 ms for Class 3 in v7.5.0. The duration of the empty BP
instantiated by the call activities, omitted in the table, is on average 0.31 ms.
A lower number of started and completed BP instances require less CPU (from
an average of 1.42% across all versions for 50 users, to 9.33% with 1’000 users)
and less RAM (from an average of 627.89 MB across all versions for 50 users to
969.62 MB with 1’000 users).

Comparable tendencies are noticeable for WfMS B which handles over 48 and
over 487 requests per second for 50 and 500 users respectively. Greater variation
among versions is present when 1’000 users are simulated with actual number
varying from 906.10 in v5.18.0 down to 885.80 requests in v5.21.0. Similar trends
are evident in the throughput, which is relatively stable for 50 users and amounts
to an average of 119 completed BP instances per second and an average of 1’160
for 500 users, except for v5.21.0 where the throughput drops to 1’132.92 bpi/s.
As with the number of requests per second, the throughput also decreases from
2’182.78 in v5.18.0 to 1’974.01 bpi/s in v5.21.0 for 1’000 users. The average

0 2 4 6 8

0

500

1’000

1’500

2’000

50 Users

500 Users

1’000 Users

wavg(D) [ms]

a
v
g
(T

)
[#

w
i
/
s]

WfMS A 7.2.0

WfMS B 5.18.0

WfMS A 7.3.0

WfMS B 5.19.0.2

WfMS A 7.4.0

WfMS B 5.20.0

WfMS A 7.5.0

WfMS B 5.21.0

Fig. 6: Instance Duration (D) vs. Throughput (T)

duration of a single BP instance follows the same trends as in WfMS A, but with
much higher absolute values of 5.08 ms in v5.18.0 for 500 users as the lowest
duration, to a value of 7.19 ms in v5.21.0 for 50 users as the highest duration.
When analyzed at BP level, the lowest average duration of 3.53 ms is observed
for Class 4 in v5.18.0, while the highest of 24.28 ms for Class 5 in v5.21.0. The
duration of the empty BP instantiated by the call activities, omitted in the table,
is on average 1.17 ms. Usage of CPU is comparable to WfMS A, with an average
of 1.97% across versions for 50 users increasing to 12.35% for 1’000 users. RAM
usage, on the other hand, is much higher than in WfMS A with an average of
2’317.80 MB across versions for 50 users and 9’539.98 MB for 1’000 users.

4.4 Discussion

In Table 2 and Table 3 we can see the detected differences in performance
and resource consumption between the two WfMSs, as well as among different
versions of the same WfMS. Some of these differences only become obvious when
a higher number of users is interacting with the system, making it relevant to
have parametrized load functions representing both small and large companies.

The number of client requests per second shows the average performance
of the system from the user point of view. It is relatively stable between all
versions of both WfMSs when tested with 50 and 500 users. However, there is
a more substantial decrease when tested with 1’000 expected users, especially
in WfMS A. The expected maximum is the number of simulated users. The
actual value depends mainly on the WfMS’s response time and it gets more
distant from the expected value as the number of simulated users increases (cf.
Table 2 and 3). The resource consumption metrics in Table 2 and 3 verify that
this behavior does not emerge due to unavailability of resources. The actual
resource consumption in all versions is far from the theoretical maximum of the
servers (see Sect. 3). The DBMS resource consumption data did not point to
any bottlenecks in the communication with the DBMS. They showed that the
DBMS had enough resources to handle the issued load. While WfMS A slightly

outperforms WfMS B in this metric with a load of 50 users, it falls behind with
a load of 500 and 1’000 users. WfMS B experiences 5.65% better #REQ/s on
average than WfMS A, mainly due to the last version of WfMS A being c.a.
15% slower than the last version of WfMS B in starting new BP instances with
1’000 users. If one expects performance improvements with new system releases,
these results could be surprising given that, with respect to these metrics, older
versions show better performance than newer versions.

The performance decrease with newer versions is made even more evident
by the BP instance duration metric (D). As we can see from Table 2, Table 3
and Fig. 6, the average duration of a BP instance increases as new versions are
introduced for both WfMSs, regardless of the number of users. When looking
at the columns of Table 2 and Table 3, in the last two versions of each system
the average instance duration decreases as the number of users increases. This
decrease is especially noticeable for WfMS B when going from 50 to 500 users,
and less when going from 500 to 1’000 users (cf. Fig. 6). It is also interesting
to point out that WfMS B performs worse than WfMS A with respect to the
average duration for the single BP instance. WfMS B is on average 5-6 times
slower than WfMS A in executing the BP instances. As previously noticed, this is
not due to the unavailability of resources. After all WfMS B uses more resources,
especially RAM, than WfMS A to obtain lower performance.

The throughput is relatively stable between all versions of both WfMSs when
50 users are involved, with WfMS A showing a slight increase in more recent
versions. However, a relatively substantial decrease in throughput is observed
in the newest version of both WfMS A and WfMS B when the load is raised
to 1’000 users (cf. Fig. 6). When looking at both systems, their throughput is
comparable with 50 users. Then WfMS A outperforms WfMS B by 2% to 4%
in newer versions with 500 users, but WfMS B takes the lead when there are
1’000 users by 3% to 6% in newer versions. This might be unexpected given that
WfMS B’s average BP instance duration is 5 times greater than WfMS A’s. It
might be due to the fact that WfMS B accepts 15% more instances per second
with 1’000 users by exploiting parallelism when executing the instances, thus
balancing the longer instance duration.

We also show the average BP instance duration for each model class among
all loads in Table 2 and Table 3 (bottom). When looking at the data, care needs
to be taken as the averages for the different BPs are calculated using different
numbers of data points. This is due to the different intensities in the execution
of the different models as presented in Table 1. Table 2 and Table 3 show that
the mentioned increase in average BP instance duration in newer WfMS versions
is not caused from one particular BP, but is noticeable in all BPs. However,
different models perform differently for the two WfMSs. While Class 1 (cf. Fig. 1)
is the fastest in WfMS A with an average duration of 1.21 ms across all loads
and versions, in WfMS B Class 4 (cf. Fig. 4) is the fastest with an average of
3.67 ms. And while Class 5, the model with the greatest size (cf. Fig. 5), has the
longest duration in WfMS B (avg. 23.39 ms), this is not the case with WfMS A,
where Class 3 (cf. Fig. 3) is the slowest one (avg. 2.56 ms). Having noticed such

differences, we examined the execution data at construct level. While WfMS B is
on average 7 times slower than WfMS A in executing the call activities (avg. 5.06
ms vs. 0.70 ms respectively), it actually performs better in executing parallel
gateways (avg. 0.01 ms vs. 0.11 ms). WfMS B executes parallel gateways faster
than exclusive gateways (avg. 0.01 ms vs. 0.04 ms) which might explain the faster
execution of Class 2 vs. Class 1. The slower execution of instances in WfMS B
also partially results from its slow instance start-up, with an average duration of
the start event of 0.56 ms vs. 0.04 ms in WfMS A. When analyzing the execution
duration of individual constructs at model level, stable behaviour is noticed for
start and end events, while the greatest variation between models is observable
for the call activity and script task in WfMS B and for the gateways in WfMS A.

Last, but not least, the resource consumption metrics verify that the WfMSs’
performance behavior is not caused by lack of resources. Average CPU and RAM
consumption is relatively stable between versions for both systems. In fact, the
average CPU consumption is at most 12.78% across the different experiments,
while the maximum (not reported in the table) is 85% for WfMS B, and 82% for
WfMS A. The average RAM consumption is at most 9’749.74 MB, out of the
maximum available of 128 GB. These metrics are also a powerful indication of the
required resources for obtaining the results produced by the other performance
metrics. The CPU consumption is comparable between the two systems, with
slightly higher values for WfMS B especially for 1’000 users for all versions.
Regarding the RAM consumption, WfMS B always needs more RAM than
WfMS A, up to 10x times more for certain experiments.

5 Threats to Validity

The complexity of running performance experiments on WfMSs, contributes to
the following threats to validity.

Construct validity is threatened from the fact that the extracted workload
mix depends on the collection used as an input to the analysis of recurring
structures. We mitigate the resulting generalization limitations by using a large
and heterogeneous collection. Moreover, we provide a parametric method to
derive the workload mix, so that it can be applied to other collections (e.g.,
domain-specific or customer-specific). Another threat to the construct validity
is the unavailability of log data, which has resulted with a randomly generated
artificial data for evaluating the path to follow in conditional path decisions.
Moreover, all the scripts not used for data generation are empty, thus limiting the
evaluation of the performance impact of data stored by tasks in the BP instances.
The workload mix has not been experimentally compared to any similar baseline
approach, leaving a degree of uncertainty regarding the level of accuracy. Finally,
the generated workload mix remains unchanged between the experiments, thus
hindering a profound comparison between the WfMSs and their versions with
regard to the characteristics of the workload mix. We mitigate this by a short
discussion about the performance differences between the classes of models used
in the workload mix.

A threat to the external and construct validity is that specific settings of our
load functions (e.g., the number of users and their think time) could be more
realistic. However, the parametric method can still be applied upon availability
of additional real-world data and execution logs. Nonetheless, the load functions
used were sufficient to stress the system and obtain initial performance insights.

The use of different servers for the WfMS and the DBMS connected through
a dedicated 10 Gbit/s network is also a potential threat to external and construct
validity, because of the network latency that might impact the communication
between the WfMS and the DBMS. However, we are confident that our set-up
mitigates the impact of network latency and congestion on the attained mea-
surements. Related to this, results may differ when using a system with different
(e.g., higher) hardware specifications than the ones used in our experiments or,
for example, when using another DBMS. Additional threat is the use of a single
configuration per WfMS. Performance differences may be noticed when changing
the configuration.

6 Related Work

Parametric Workload Generation Graph-based workloads have been applied
for performance testing applications that model data as graphs. In addition to
size, Duan et al. [2] introduce the metric of “structuredeness” of RDF datasets
generated for performance testing purposes. Vicknair et al. [17] compare the
performance of a graph DB and a relational DB. The defined workload is divided
into structural and data queries. The structural queries address the storage of data
provenance information as Directed Acyclic Graphs. The data queries use payload
data, with artificial provenance information. Similar to both, for the definition
of our representative workload mix, we combined structural characteristics of
the BPs by considering size and other statistical information. Gupta [6] stresses
the need for a parametric method to allow the user to dynamically generate
workload with respect to structural parameters. Our method offers generation
and parametrization of the workload mix, when the original collection or the
performance goals vary. The importance of the graph’s structure is most of the
times ignored [2], and the structural information is represented by empirical
and/or artificial data [17]. In our case, the structural information of the workload
is defined by extracting the reoccurring structural patterns in a collection. The
same method can be applied to any BPMN 2.0 collection, due to its parametric
nature. By combining the derived information with other statistical data, such as
descriptive statistics, clustering and popularity metrics [3], we are able to define
different classes in the workload mix [14]. Overall, in the area of big and linked
data, the generation of realistic graphs for performance testing purposes is well
established. However, to the extent of our knowledge, this is the first time that an
approach for BP synthesis is proposed for WfMSs performance testing. To this
end, the experimental comparison of the proposed approach to a less advanced
approach is currently not possible.

WfMSs Performance Testing In the literature we can find work on char-
acterizing WfMSs’ performance. As reported by Röck et al. [13], who conducted a
systematic review on approaches that test the performance of WS-BPEL WfMSs,
all performance tests are custom or micro-benchmarks. The most prominent
one is SOABench [1], which uses a simple workload mix composed by basic
BPEL structures. SOABench is used to compare the response time of three
open-source WfMSs (ActiveVOS, jBPM, and Apache ODE) using a different
number of clients with variable think times and has identified some scalability
limitations of the tested systems. To the best of our knowledge, our existing
work on micro-benchmarking [15], is the first effort to propose a performance
testing method for BPMN 2.0 WfMSs. The results in [15] showed bottlenecks
in architectural design decisions and resource consumption, as well as limits on
the load the WfMS can sustain. The results presented in this paper extend our
earlier observations with experiments based on a more complex, structurally
representative, parametric workload and by comparing different WfMSs versions.

7 Conclusion and Future Work

In this paper we presented a novel parametric method for deriving a structurally
representative workload mix from a potentially large BPMN 2.0 collection, to
respond to the need of evaluating the performance of different WfMSs versions
with an appropriate workload. We illustrated how to obtain the BP models of
a workload mix, using the proposed method for distilling the most prominent
control-flow characteristics of the given collection. We also proposed a method
for using such collection to determine the proportion of instantiated BPs in the
workload mix. We then parametrized the load function for different numbers of
simulated users (50, 500, and 1’000) representing differently sized companies. We
issued the derived workload model to four different versions of two widely used
open-source BPMN 2.0 WfMSs. After validating the reliability of the obtained
results we computed diverse performance metrics. While WfMS A demonstrated
significantly lower average duration of a single BP instance and lower RAM usage,
WfMS B had the lead in throughput. Furthermore, over both system releases
within the past two years, it appears that priority was given to adding new
features as opposed to improving the performance. The obtained results justify
the need for performance testing of different WfMSs versions using a workload
mix representative of user’s needs and BP collections.

As future work we plan to apply the proposed method to domain-specific
model collections. In such settings we also plan to extend our method to support
events, human tasks, and WfMS interaction with external systems, such as Web
Service APIs. We also aim at the experimental comparison of the synthetic
workload mixes to real-world process models, in order to identify the accuracy
of our workload mix generation method. Moreover, we have started analyzing
execution logs of real world BP instances to define even more realistic load
functions. We plan to add more WfMSs and run the experiments with different
configuration settings.

Acknowledgements

This work is partially funded by the Swiss National Science Foundation and
the German Research Foundation through the BenchFlow: A Benchmark for
Workflow Management Systems (DACH Grant Nr. 200021E-145062/1) project.

References

[1] Bianculli, D., et al.: Automated performance assessment for service-oriented mid-
dleware: A case study on BPEL engines. In: Proc. of WWW. pp. 141–150 (2010)

[2] Duan, S., et al.: Apples and oranges: a comparison of RDF benchmarks and real
RDF datasets. In: Proc. of SIGMOD. Association for Computing Machinery (2011)

[3] Feitelson, D.G.: Workload modeling for computer systems performance evaluation.
Cambridge University Press (2015)

[4] Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking BPMN 2.0
workflow management systems. In: Proc. of BPM ’15. pp. 251–259. Springer (2015)

[5] Ferme, V., et al.: A container-centric methodology for benchmarking workflow
management systems. In: Proc. of CLOSER ’16. pp. 74–84. Springer (2016)

[6] Gupta, A.: Generating large-scale heterogeneous graphs for benchmarking. In:
Specifying Big Data Benchmarks, pp. 113–128. Springer (2014)

[7] Hollingsworth, D.: The workflow reference model. WfMC 68 (1995)

[8] Jordan, D., et al.: Business Process Model And Notation (BPMN) version 2.0.
Object Management Group, Inc (2011), http://www.omg.org/spec/BPMN/2.0/

[9] Molyneaux, I.: The Art of Application Performance Testing: From Strategy to
Tools. O’Reilly Media, 2nd edn. (2014)

[10] Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers.
John Wiley and Sons (2003)

[11] Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. In: CAiSE 2008. pp. 465–479 (2008)

[12] Pietsch, P., Wenzel, S.: Comparison of BPMN2 diagrams. In: Mendling, J., Wei-
dlich, M. (eds.) Business Process Model and Notation, Lecture Notes in Business
Information Processing, vol. 125, pp. 83–97. Springer (2012)

[13] Röck, C., et al.: Performance benchmarking of BPEL engines: A comparison
framework, status quo evaluation and challenges. In: Proc. of SEKE. pp. 31–34
(2014)

[14] Skouradaki, M., Andrikopoulos, V., Leymann, F.: Representative BPMN 2.0 process
model generation from recurring structures. In: Proc. of ICWS ’16 (2016)

[15] Skouradaki, M., et al.: Micro-benchmarking BPMN 2.0 workflow management
systems with workflow patterns. In: Proc. of CAiSE ’16. pp. 67–82. Springer (2016)

[16] Skouradaki, M., et al.: RoSE: Reoccurring structures detection in BPMN 2.0
process models collections. In: Proc. of CoopIS. Springer Berlin Heidelberg (2016)

[17] Vicknair, C., et al.: A comparison of a graph database and a relational database.
In: Proc. of ACM SE’10. Association for Computing Machinery (ACM) (2010)

[18] Wetzstein, B., et al.: Monitoring and analyzing influential factors of business
process performance. In: Proc. of EDOC ’09. pp. 141–150 (2009)

http://www.omg.org/spec/BPMN/2.0/

	Performance Comparison Between BPMN 2.0 Workflow Management Systems Versions

