
Lessons Learned from
Evaluating Workflow Management Systems

Jörg Lenhard1, Vincenzo Ferme2, Simon Harrer3, Matthias Geiger3, and
Cesare Pautasso2

1 Department of Mathematics and Computer Science, Karlstad University, Sweden,
joerg.lenhard@kau.se

2 Software Institute, Faculty of Informatics, USI Lugano, Switzerland,
{firstname.lastname}@usi.ch

3 Distributed Systems Group, University of Bamberg, Germany,
{firstname.lastname}@uni-bamberg.de

Abstract. Workflow Management Systems (WfMSs) today act as ser-
vice composition engines and service-oriented middleware to enable the
execution of automated business processes. Automation based on WfMSs
promises to enable the model-driven construction of flexible and easily
maintainable services with high-performance characteristics. In the past
decade, significant effort has been invested into standardizing WfMSs
that compose services, with standards such as the Web Services Business
Process Execution Language (WS-BPEL) or the Business Process Model
and Notation (BPMN). One of the aims of standardization is to enable
users of WfMSs to compare different systems and to avoid vendor lock-in.
Despite these efforts, there are many expectations concerning portabil-
ity, performance efficiency, usability, reliability and maintainability of
WfMSs that are likely to be unfulfilled. In this work, we synthesize the
findings of two research initiatives that deal with WfMSs conformance
and performance benchmarking to distill a set of lessons learned and best
practices. These findings provide useful advice for practitioners who plan
to evaluate and use WfMSs and for WfMS vendors that would like to
foster wider adoption of process-centric service composition middleware.

Keywords: WorkflowManagement Systems, Standards, Lessons Learned,
Evaluation Research, Benchmarking, Service Composition

1 Introduction

Workflow management systems (WfMSs) are a core middleware technology for en-
gineering service-oriented applications and for building service orchestrations [21].
Recently, WfMSs are being adapted to cloud computing environments to enable
the development of scalable and elastic service-oriented systems.

The most critical part of a WfMS is probably the language in which a
user can implement applications and services (i.e., workflows), that run on
top of a WfMS. Selecting an unsuitable language or one that cannot easily be
transferred to another system can have severe implications for a user, such as an



inability to express business requirements or vendor lock-in [2]. This situation
has been addressed by global standardization consortia. To this end, several
organizations proposed workflow standards, as for example OASIS with the Web
Services Business Process Execution Language (WS-BPEL) [20], or OMG with
the Business Process Model and Notation (BPMN) [16].

Workflow standards [16,20] define the language that can be used to implement
workflows and the lifecycle of workflow instances. They are meant to clarify the
exact scope, building blocks, constraints, and semantics of the language in a precise
and unambiguous fashion. As a result, users may select a WfMS with respect
to the standard it supports. Unfortunately, in many real-world systems, this
assumption is flawed. For example: 1) the quality of standards is often not as high
as expected. Especially the BPMN 2.0 standard has been shown to contain many
inconsistencies, ambiguities, and editorial flaws [2,9]. 2) A certification process
is not available for any of the standards. As a consequence, any WfMS vendor
can claim compliance to a standard without providing proof of this claim. Thus,
many vendors just claim support for a standard [8]. 3) Even in the cases where
standards provide an unambiguous specification, WfMSs do not necessarily follow
that specification, but only implement parts of it [8, 12]. The standard-support
related flaws, also lead to performance evaluation pitfalls in WfMSs, such as:
1) the execution performance of the same workflows differs significantly between
WfMSs [22] and 2) the miscellaneous usage and implementations of workflow
languages are obstacles for the construction of a standard benchmark [23].

As a consequence of the aforementioned flaws, the selection of a suitable
WfMS constitutes a challenging task in practice. This paper aims to provide
guidance for practitioners (e.g., users and vendors of WfMSs) by highlighting
key issues during WfMS evaluation. The material is a cumulative report based
on findings we collected over a period of more than five years of experience and
derived through independent research initiatives regarding WfMSs4. The novelty
in this work comes from the aggregation of these results in a joint fashion as
lessons learned and we aim at answering the following research questions:

RQ1 Which are the most common expectations and pitfalls during the usage of
standard-based WfMSs for automated service composition?

RQ2 How does a practitioner experience the consequences of these pitfalls, in
particular regarding the behavior and performance of the WfMS, and how
can the pitfalls be addressed?

To answer these questions and to support an easy understanding and transfer to
practice, we formulate the aggregated knowledge as lessons learned. We mainly
look at situations in which a WfMS is integrated into a more complex environment
and is used as a service by many other systems.

This paper is based on an extended abstract [5], which motivates the reporting
of lessons learned and briefly mentions a set of five lessons. Here, we report on an
extended set of lessons learned, providing additional evidence and details gained
with a larger set of WfMSs.

4 BenchFlow - http://benchflow.inf.usi.ch and Betsy - https://github.com/

uniba-dsg/betsy

http://benchflow.inf.usi.ch
https://github.com/uniba-dsg/betsy
https://github.com/uniba-dsg/betsy


In the next section, Sect. 2, we discuss related work. Thereafter, in Sect. 3,
we outline the process followed to derive lessons learned, the schema for their
presentation in this paper, and the set of resulting lessons. Sect. 4 concludes the
paper with a summary and an outline for future research directions.

2 Related Work

In this section, we discuss work related to our lessons learned, related workflow
languages, and benchmarking approaches.

Two of the most prominent languages for modeling and executing workflows
related to services and also relevant to our work here are WS-BPEL [20] and
BPMN 2.0 [16]. The two languages serve similar goals but differ in their expressive
power and the language constructs they provide: WS-BPEL is dedicated to
the orchestration of web services [20], whereas BPMN 2.0 supports service
invocations and message exchanges, but also human activities [16]. Here, we
focus on automated workflows only and the human aspects of BPMN 2.0, such
as collaborative process modeling, are deliberately out of scope.

Closely related to this paper is the work by Bianculli et al. [1]. The authors
propose SOABench as an approach for evaluating the performance of WS-BPEL
WfMSs. Here, our focus is broader, since we also take BPMN 2.0 into account
and are not limited to the evaluation of performance efficiency aspects only,
but cover other characteristics of software quality as well. Furthermore, Wohed
et al. [27] evaluate several WfMSs and older versions of BPMN and BPEL for
their support for workflow patterns. We also leverage workflow patterns in our
work [8,12,22], but evaluate newer versions of said workflow languages. Similarly,
Garcês et al. [7] present a survey of open source WfMSs. However, the authors
address the problem from a different direction. They derive comparison criteria a
priori from the workflow reference model and evaluate these criteria. The key
difference to this work is that we present lessons learned, i.e., we did not derive a
priori criteria but did a post-hoc study based on the observations made during
our evaluations. Moreover, the set of systems evaluated is quite different from the
systems we consider here. The same applies to Delgado et al. [3] who also build
on similar quality models as we do here, but take a more generic stance. The
authors state themselves in their study that they differ from our work in many
aspects, such as the systems to be evaluated. Being similar to benchmarking
methods and tools, approaches for test generation and testbed generation for
service-oriented systems, such as [19], are related to our work. For instance, López
et al. [19] propose a framework for black-box and property-based testing of web
services. Although this framework is intended to test actual applications running
on WfMSs, it could be leveraged to evaluate WfMSs as well.

3 Findings and Lessons Learned

A commonly accepted classification of research papers in software engineering is
presented in the work by Wieringa et al. [26]. Using this classification, our work



qualifies as evaluation research. More precisely, we aim at increasing knowledge by
combining existing findings derived from multiple research groups into a common
view. This can be achieved by a joint specification of lessons learned [26, p. 105].

The lessons learned presented in this work are based on cumulative research
results, data collection, and experience derived by using and benchmarking
different workflow language standards and WfMSs in a number of empirical stud-
ies [4,6,8,9,11–14,17,22,23]. We conducted these studies over a period of several
years independently of each other in separate groups, different environments, and
with a different evaluation focus. To generate the lessons learned presented here,
the group of authors met in person and in video conferencing sessions over an
extended period of time. We discussed key lessons that we learned independently
through our research in WfMSs evaluation and captured the ones that we learned
jointly. The resulting list of lessons was prioritized through a joint voting process
and the top lessons are presented in this paper. This research process is very
similar to the way in which pattern languages are being developed.

The BPMN 2.0 WfMSs we consider in this paper are Activiti, Bonita, Ca-
munda, and jBPM, which according to the vendor’s websites, are widely used
in the industry. In total, we attempted the evaluation of 47 BPMN 2.0 WfMSs,
but most of them could not be integrated into our evaluation approaches due
to various reasons such as licensing issues, missing standard compliance, or the
unavailability of management APIs [8]. For WS-BPEL, our lessons learned are
based on the usage of Apache ODE, OpenESB, bpel-g, Orchestra, Petals ESB,
and three commercial WfMSs whose names we are not allowed to disclose due
to licensing. We decided to include pseudonymized results for the commercial
WfMSs in this paper, although we acknowledge that this is less informative. The
data collected are publicly available on an interactive dashboard5. To continuously
survey the standard-compliant WfMSs landscape, we created a Wikipedia page for
BPMN 2.0 WfMSs6 which is kept up-to-date by public contributors and ourselves.
In addition to helping practitioners in their decision-making, the dashboard and
the Wikipedia pages help with improving transparency by reporting the actual
state of the WfMSs ecosystem back to the vendors. To document the lessons
learned, we use the following structured schema:

Expectation: Users of WfMSs have a number of expectations that are often
perceived as true in practice and that are communicated in this fashion by
WfMS vendors.

Observation: Although many of the expectations towards WfMSs can be fulfilled,
some cannot. This also applies to aspects of considerable importance. In
the observations sections, we present and discuss existing evidence that an
expectation is not met. Furthermore, we report cases in which it is met.

Consequence: Not meeting a certain expectation has consequences, which are
discussed in this part of the schema.

The final list of lessons identified in this study comprises seven items. For
some of them, we identified WfMSs that avoid the pitfalls by following what

5 http://peace-project.github.io, last visited at September 27, 2017
6 https://en.wikipedia.org/?curid=43305615 , last visited at September 27, 2017

http://peace-project.github.io
https://en.wikipedia.org/?curid=43305615


Fig. 1. Findings categorized using the ISO/IEC 25010 Quality Model

we consider a good approach. For structuring purposes, we categorized these
lessons using the ISO/IEC 25010 quality model [15] as shown in Fig. 1. According
to this quality model, the lessons we defined can be grouped with respect to
functional suitability, performance efficiency, usability, reliability, maintainability,
and portability. The ISO/IEC 25010 standard provides two more categories,
namely, compatibility and security, that were not considered in this work, since
we did not experience pitfalls specific to these categories. More specifically, a
dedicated evaluation of security properties is not part of our initiatives and not
planned for future work. Nevertheless, an evaluation dedicated to this property
might very well discover new pitfalls.

3.1 Functional Suitability Findings

Lesson 1: Dynamic Reconfiguration
Expectation: WfMSs are expected to support dynamically changing environ-

ments and flexible dynamic service bindings [25]. This entails the reconfiguration
of workflow instances at runtime when they interact with late-bound external
systems and alternative service providers. It should be possible to pass the address
of a service to a workflow instance and the instance should be able to redirect
its communication channels to this service. As an example, in a workflow that
processes orders, a buyer could send the address of his own web service to the
workflow instance so that he will be notified when the order is complete.

Observation: In WS-BPEL, dynamic reconfiguration is possible in a stan-
dard conformant way, by updating the endpoint of specified partner links. However,
one out of three proprietary WfMSs evaluated in [12] and four out of five open
source WfMSs, namely, Apache ODE7, OpenESB, Orchestra, and Petals ESB,
evaluated in [11] and [12] do not support standard-conformant dynamic reconfig-
uration and only bpel-g does so. We did not check non-standard vendor-specific
extensions which could provide similar functionality. In BPMN 2.0, dynamic
reconfiguration is defined only in an abstract way, but no WfMS actually supports
it based on the standard.

Consequence: Because of the lack of dynamic reconfiguration, the creation
of self-adapting systems is hindered in WS-BPEL WfMSs. Instead of changing the
channels within the workflow, each external web service needs to be encapsulated

7 The developers of ODE fixed this in a later version.



through a proxy service which itself can be dynamically reconfigured, leading to
higher development and maintenance costs [25]. In BPMN 2.0 WfMSs, it is not
possible to implement dynamic reconfiguration in a standards-based fashion.

3.2 Performance Efficiency Findings

Lesson 2: Parallel Process Execution
Also affects the functional suitability.

Expectation: One of the major advantages of workflow languages is that one
can specify the control-flow of workflows in a declarative way. Then, any WfMS
that implements the execution semantics of the workflow language should execute
instances of these workflows by following the specified control-flow definitions.
When modeling parallelism, the user expects that the underlying WfMS will
execute the constructs that are marked as parallel to each other in a concurrent
manner. Parallelism can be expressed with various control flow constructs in
both standards. Using WS-BPEL [20] it is possible to define parallel execution
using the forEach and flow constructs. Moreover, eventHandlers are always
executed in parallel for a workflow scope that is attached to them. BPMN 2.0 [16]
provides a similar variety of constructs for expressing parallelism. The most
commonly used one is the splitting parallelGateway that acts as a fork operation
and causes the parallel execution of the connected branches. Other possibili-
ties are the use of inclusiveGateways, eventBasedGateways, or the definition of
MultiInstanceLoopCharacteristics for tasks and sub-processes.

Observation: In [11,12], we studied the behavior of WS-BPEL [20] workflow
models containing the parallel forEach element. The research was conducted for
five open source (Apache ODE, bpel-g, OpenESB, Orchestra, and Petals ESB)
and three proprietary WS-BPEL WfMSs. The results showed that two open
source (OpenESB, Petals ESB) and one proprietary WfMSs ignored the parallel
semantics on the flow and forEach elements and one (Orchestra) on the forEach
element only, silently resulting in a sequential execution.

Likewise, we evaluated three open source BPMN 2.0 WfMSs [22], namely
Camunda, Activiti and jBPM regarding their support for workflow patterns. These
patterns are considered as pieces of functionality that should be easily expressible
in any workflow language. We tested the WfMSs against five fundamental control-
flow workflow patterns, two of which contain parallelism. The results show
that all benchmarked WfMSs implement parallelism in a pseudo-parallel, non-
deterministic way, which is also reported in another study [8]. jBPM uses a
random execution order of the parallel elements, while Camunda and Activiti
always execute the parallel elements in the order in which they are defined in
the workflow model. Moreover, jBPM shows a significant drop in performance if
the parallelism construct is used [22].

Consequence: Due to pseudo-parallel execution, it is not possible to speed
up the execution of independent control-flow branches by using the language
constructs dedicated to parallelism. Apart from the performance aspect, this is
also problematic as in some situations the functional correctness might depend
on a truly parallel execution. For instance, several workflow patterns, such as



multiple instances without a priori runtime knowledge, build on truly parallel
execution, and thus, “the lack of truly parallel execution in a WfMS is the biggest
obstacle to pattern support” [12, p. 111].

3.3 Usability Findings

Lesson 3: Correctness Checking during Deployment

Expectation: Both workflow languages, WS-BPEL [20] and BPMN 2.0 [16],
define constraints regarding the correctness of modeled workflows. WS-BPEL
explicitly lists 94 rules named static analysis rules, which describe issues that
should be detected by any standard compliant WfMS. Thus it is to be expected
that WfMSs are capable of detecting invalid workflow models at deploy time.

Observation: Deploying invalid workflows that violate static analysis rules
or BPMN 2.0 constraints revealed that most WfMSs are not capable of this kind
of detection [8,14]. Regarding WS-BPEL WfMSs, we evaluated several systems for
their coverage of static analysis rules [14]. Ignoring the reference implementation
of BPEL which we do not consider here, we found that a single WfMS (OpenESB)
performs no detection at all, and the rest have a highly varying detection rate of
at most 75%. For BPMN 2.0, a common omission can be found in the missing
validation of timer conditions. None of the three WfMSs benchmarked in [22],
namely Camunda, Activiti, and jBPM, validated timer conditions at deploy-time,
although there is a mandatory definition of the format [16].

Consequence: As invalid workflows are not rejected on deployment, errors
are not detected early in the development process. Thus, errors may be hidden for
a long time in production use only to be found later, which is costly. Invalid work-
flows may fail at runtime creating runtime errors in the WfMSs. To make things
worse, in some cases the workflows do not crash observably, but instead complete
with non-deterministic results. If the used WfMS is weak in detecting violations
of standard-defined rules, the users creating workflows for deployment should
consider using external tools for validating the workflows prior to deployment.

Lesson 4: Availability of Management APIs

Expectation: In production, WfMSs are usually part of a more complex
software ecosystem and typically interact with other services. They are also
integrated more and more into a continuous integration and delivery lifecycle [24].
It is to be expected that WfMS vendors provide management APIs [4] to support
continuous integration and delivery.

Observation: Only four (Camunda, Bonita, jBPM, and Activiti) out of a set
of 47 BPMN 2.0 WfMSs which we analyzed allow an automatic deployment and
execution of workflows through a REST API [8]. Camunda and Activiti expose
complete REST APIs to the clients so that the interaction with those WfMSs is
straightforward. Bonita and jBPM provide partial support for interaction through
the provided REST APIs. For example, the former misses the possibility to log



into the API, forcing the user to log in using the so-called Web REST API8,
while the latter misses an API to deploy workflows, leading to the need for a
workaround. Out of the remaining 43 WfMSs, many require human interaction
with a user interface at various stages. Examples range from a manual import
of standard-compliant BPMN 2.0 workflows prior to deployment, over manual
deployment using a web front-end, to manual creation of new workflow instances.
In contrast, the WfMSs supporting WS-BPEL do not support REST APIs, but
require file handling or other APIs (ODE, bpel-g, Orchestra, Petals ESB) [10,11].
One (OpenESB) even lacks a remotely accessible API.

Consequence: Given the limitations or lack of the WfMSs’ APIs, it is often
hard or impossible to integrate the products in a fully automated continuous
integration lifecycle. For instance, it is often not possible to quickly detect errors
introduced in revisions of existing workflows by automated tests. This hinders the
application of agile development methods that rely on short feedback loops [24].

3.4 Reliability Findings

Lesson 5: Isolation of Instance Execution
Expectation: Workflow instances should be executed in a sandbox. Users

expect that instances cannot influence each other only because they are executed
in the same environment. Moreover, faulty instances should not have an impact
on the stability and integrity of the WfMS itself. Facilities need to be in place
to restrict hostile instances from breaking out of their runtime environment,
overloading the WfMS performance-wise, or taking down the entire WfMS [13,18].
Furthermore, the WfMS should also try to minimize performance interference of,
and between, different workflow instances [18].

Observation: For some Apache ODE versions, we observed that individual
workflow instances are able to jeopardize the execution of other workflow instances
or even severely affect the underlying WfMS stability. If a process instance enters
a state of busy waiting, the resulting CPU load crashes the whole WfMS [12]. In
the case of BPMN 2.0 WfMSs, we found that single versions of Activiti, jBPM,
and Camunda were crashing due to memory leaks if the executed workflows are
using infinite loops to execute script tasks. Moreover, the default configurations
of Activiti and Camunda were not stable when using workflows containing loops
and 1500 concurrently interacting users [22].

Consequence: The effect of missing isolation during workflow instance
execution is similar to a single process crashing a complete operating system. It
is obvious that this should not happen. The WfMSs should be safe from possible
crashes of workflows instances, protecting other running instances. This can be
achieved, for example, by detecting excessive resource usage (e.g., RAM, CPU,
I/O) and suspending the critical workflow instances. Another complementary
approach could be the usage of independent WfMS installations for different,
independent sets of workflows instances. This is facilitated as the WfMSs vendors
are starting to support virtualization techniques such as Docker containers.

8 http://documentation.bonitasoft.com/?page=rest-api-overview#toc2, last vis-
ited at September 27, 2017

http://documentation.bonitasoft.com/?page=rest-api-overview#toc2


3.5 Maintainability Findings

Lesson 6: Evolution Towards Improvement
Also affects performance efficiency and functional suitability.

Expectation: WfMSs should improve and evolve over time towards a higher
degree of maturity. When upgrading to a newer version, users expect that it will
be better than the previous one. For WfMSs, usual expectations are improvements
in i) functionality available to the users, ii) number of language features supported,
iii) performance and iv) reductions of workflow instances execution cost.

Observation: In [8], we investigated the evolution of the three BPMN 2.0
WfMSs Camunda, Activiti, and jBPM over the period of three years. All the
three WfMSs evolved in terms of functionality available. Besides the evolution
in functionality, we also discovered regressions over the years. For example,
in the cases of Activiti and jBPM there were features that stopped working
after upgrading to the next release. What is more, all three WfMSs made only
marginal progress in the support of more BPMN 2.0 features. Also, research in
performance benchmarking of the Activiti and Camunda WfMSs revealed that
over the versions the performance of the WfMSs decreased [6]. In particular,
the time needed by the WfMSs to execute single workflow instances constantly
increased over time, by approximately 8% per year.

Consequence: There are two consequences for users: 1) they should be
careful when upgrading to a newer version as regressions (in terms of supported
features and performance) are possible, and 2) users should not expect that
language feature support (especially for BPMN 2.0) will increase from version to
version. This creates the necessity for users to benchmark WfMSs extensively
before deciding about adopting newer versions.

3.6 Portability Findings

Lesson 7: Standards-based Portability
Expectation: One of the goals of standardizing workflow languages and

WfMSs is to establish a commonly agreed set of functionality and a serialization
format for specifying the workflows that enables their portability [16, 20]. Given
that a standard is supported by multiple WfMSs, users should be able to move
workflows implemented in the standard between any of these systems. This
protects from vendor lock-in. Moreover, the execution semantics of a standards-
based workflow should be identical on any WfMS supporting the standard.

Observation: In the absence of certification authorities, standard acronyms
are rather hollow. For instance, there are many vendors that state to support
BPMN 2.0. In [8], we tested 47 products stating to implement BPMN 2.0 and
discovered that only three of them (Activiti, Camunda, and jBPM) were able
to import, deploy, and execute workflows expressed directly in the standardized
execution format. Instead, many vendors rely on custom serialization formats, as
for example Bonita9, and only provide a subset of the visual BPMN 2.0 shapes
for modeling.

9 http://documentation.bonitasoft.com/?page=build-a-process-for-

deployment, last visited at September 27, 2017

http://documentation.bonitasoft.com/?page=build-a-process-for-deployment
http://documentation.bonitasoft.com/?page=build-a-process-for-deployment


Table 1. Summary of the Findings: + (good approach), − (pitfall present), ∼ (pitfall
partially present), n/a (no observations)

WfMS 1.

D
y
n
a
m
ic

R
e
c
o
n
fi
g
u
ra

ti
o
n

2.

P
a
ra

ll
e
l

E
x
e
c
u
ti
o
n

3.

C
o
rr
e
c
tn

e
ss

C
h
e
ck

in
g

4.

M
a
n
a
g
e
m
e
n
t

A
P
Is

5.

In
st
a
n
c
e

Is
o
la
ti
o
n

6.

Im
p
ro
v
e
d

E
v
o
lu
ti
o
n

7.

S
ta

n
d
a
rd

P
o
rt
a
b
il
it
y

BPMN
Activiti n/a − [8, 22] ∼ [8, 22] + [8] ∼ [22] ∼ [6, 8] ∼ [8]
Bonita n/a n/a n/a ∼ n/a n/a −
Camunda n/a − [8, 22] ∼ [8, 22] + [8] ∼ [22] ∼ [6, 8] ∼ [8]
jBPM n/a − [8, 22] ∼ [8, 22] ∼ [8] + [22] ∼ [8] ∼ [8]
WS-BPEL
ODE + [11] + [12] ∼ [14] + [10] − [12] n/a ∼ [11]
OpenESB − [11] − [12] − [14] − [10] + [12] n/a ∼ [11]
bpel-g + [11] + [12] ∼ [14] + [10] + [12] n/a ∼ [11]
Orchestra − [11] ∼ [12] ∼ [14] + [10] + [12] n/a ∼ [11]
Petals ESB − [11] − [12] ∼ [14] + [10] + [12] n/a ∼ [11]
3 Commerc. ∼ [12] ∼ [12] n/a n/a + [12] n/a ∼ [12]

Even if execution using a standardized language is supported in principle, this
support is often limited to selected features of the language. Details of feature
support are reported in [11,12] for WfMSs using WS-BPEL and in [8] for WfMSs
using BPMN 2.0. Essentially, for both standards, the number of language features
that is commonly supported by a large majority of the tested WfMSs is limited
to around 40% of the features defined in the respective standards. The supported
features are limited to the basic part of the standards, such as enabling sequential
execution, conditional branching, and basic looping.

Consequence: Modeling a workflow in compliance to a standard does not
guarantee that the workflow can be executed by a WfMS. The situation is further
complicated by the fact that some vendors serialize workflows with custom
language extensions specific to their product, which introduces vendor lock-in.

3.7 Summary

We presented seven lessons for which we formulated common expectations and
discussed good approaches and potential pitfalls [RQ1]. In Table 1, we summarize
these lessons learned. The table reports the findings for all the WfMSs providing
sufficient APIs [4], as discussed in lesson 3.3, enabling us to automate the analysis
producing the data on which most of the findings are based on. We use a trivalent
rating that classifies WfMSs as using a good approach (+), containing a pitfall
(-), or partially containing a pitfall (∼). As evident from the table, each WfMS
has advantages and disadvantages and no single WfMS provides a good approach
for all of the discussed lessons.

The aggregated results highlight the relationship between workflow standards,
WfMSs, and the user expectations that follow from this relationship. To answer
RQ1, we identified pitfalls in the areas of functional suitability, performance



efficiency, usability, reliability, maintainability, and portability. Despite the ex-
isting standards, expectations about the available functionality or portability
of workflow models are often not fulfilled. The usability of WfMSs in terms of
correctness checking and available APIs is limited in many cases and new versions
do not necessarily lead to improvements. Lastly, scalability and workflow instance
isolation can be problematic.

As consequences for users, referring to RQ2, this study shows that thorough
research and evaluation before selecting a WfMS is inevitable despite the existence
of workflow standards. It is unlikely to find a system that actually supports a
complete standard and the danger of vendor lock-in is still real. Even when only
updating a WfMS, a careful evaluation is needed because of potential regressions
in terms of supported features or performance characteristics.

4 Conclusion and Future Work

In this paper, we presented a catalog of lessons learned regarding the usage
of WfMSs, synthesized from findings obtained by two independent research
initiatives over a five-year period. This synthesis uncovers a number of common
expectations and pitfalls in WfMSs usage. No WfMS we investigated follows
only good approaches, but they all lack important aspects. Most prominently,
the standard conformance, and thus the portability of workflows, is severely
hampered, despite the claimed support for standards. In this regard, it can be
diagnosed that standards have largely failed their target of a harmonized WfMSs
landscape. Ultimately, a WfMS selection will require a prioritization approach
that ranks features according to their importance for the intended specific usage
scenario. Based on such a ranking, the presented results can support the selection.

In conducting this study, we also learned lessons about aggregating bench-
marking results as lessons learned. We have found the aggregation of lessons
feasible and valuable despite the fact that our initiatives were focused on different
quality attributes, i.e., conformance and performance, even if this meant we had
to discard lessons that were important in one area, but not present in the other.

References

1. Bianculli, D., Binder, W., Drago, M.L.: Automated Performance Assessment for
Service-Oriented Middleware: a Case Study on BPEL engines. In: 19th WWW. pp.
141–150. Raleigh, North Carolina, USA (Apr 2010)

2. Börger, E.: Approaches to Modeling Business Processes. A Critical Analysis of
BPMN, Workflow Patterns and YAWL. Softw Syst Model 11(3), 305–318 (2012)

3. Delgado, A., Calegari, D., Milanese, P., Falcon, R., Garćıa, E.: A Systematic Ap-
proach for Evaluating BPM Systems: Case Studies on Open Source and Proprietary
Tools. In: 11th OSS. Florence, Italy (May 2015)

4. Ferme, V., Ivanchikj, A., Pautasso, C., Skouradaki, M., Leymann, F.: A Container-
centric Methodology for Benchmarking Workflow Management Systems. In: 6th

CLOSER. Rome, Italy (2016)
5. Ferme, V., Lenhard, J., Harrer, S., Geiger, M., Pautasso, C.: Workflow Management

Systems Benchmarking: Unfulfilled Expectations and Lessons Learned (extended
abstract). In: 39th ICSE Companion, Poster Track (2017)



6. Ferme, V., Skouradaki, M., Ivanchikj, A., Pautasso, C., Leymann, F.: Performance
Comparison Between BPMN 2.0 Workflow Management Systems Versions. In: 18th
BPMDS (2017)

7. Garcês, R., Jesus, T., Cardoso, J., Valente, P.: BPM & Workflow Handbook, chap.
Open Source Workflow Management Systems: A Concise Survey. Future Strategies
(2009)

8. Geiger, M., Harrer, S., Lenhard, J., Wirtz, G.: BPMN 2.0: The state of support
and implementation. Future Generation Computer Systems (Jan 2017)

9. Geiger, M., Wirtz, G.: BPMN 2.0 Serialization - Standard Compliance Issues and
Evaluation of Modeling Tools. In: 5th EMISA (Sep 2013)

10. Harrer, S., Lenhard, J.: Betsy–A BPEL Engine Test System. Tech. Rep. 90, Otto-
Friedrich Universität Bamberg (Jul 2012)

11. Harrer, S., Lenhard, J., Wirtz, G.: BPEL Conformance in Open Source Engines.
In: 5th IEEE SOCA. pp. 237–244 (Dec 2012)

12. Harrer, S., Lenhard, J., Wirtz, G.: Open Source versus Proprietary Software in
Service-Orientation: The Case of BPEL Engines. In: 11th ICSOC (Dec 2013)

13. Harrer, S., Nizamic, F., Wirtz, G., Lazovik, A.: Towards a Robustness Evaluation
Framework for BPEL Engines. In: 7th IEEE SOCA. pp. 199–206 (Nov 2014)

14. Harrer, S., Preißinger, C., Wirtz, G.: BPEL Conformance in Open Source Engines:
The Case of Static Analysis. In: 7th IEEE SOCA. pp. 33–40 (Nov 2014)

15. ISO/IEC: ISO/IEC 25010:2011; Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and software
quality models (2011)

16. ISO/IEC: ISO/IEC 19510:2013 – Information technology - Object Management
Group Business Process Model and Notation (2013), v2.0.2

17. Lenhard, J., Wirtz, G.: Portability of Executable Service-Oriented Processes: Metrics
and Validation. Service Oriented Computing and Applications 10(4) (Dec 2016)

18. Leymann, F.: BPEL vs. BPMN 2.0: Should You Care? In: 2nd Intl. Workshop on
BPMN. pp. 8–13 (2010)

19. López, M., Ferreiro, H., Francisco, M., Castro, L.: Automatic Generation of Test
Models for Web Services Using WSDL and OCL. In: 11th ICSOC. Berlin, Germany
(Dec 2013)

20. OASIS: Web Services Business Process Execution Language (2007), v2.0
21. Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10), 46–52

(Oct 2003)
22. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-

Benchmarking BPMN 2.0 Workflow Management Systems with Workflow Patterns.
In: 28th CAiSE 2016. pp. 67–82 (Jun 2016)

23. Skouradaki, M., Roller, D.H., Leymann, F., Ferme, V., Pautasso, C.: On the Road
to Benchmarking BPMN 2.0 Workflow Engines. In: 6th ACM/SPEC ICPE. pp.
301–304. ACM (2015)

24. Thiemich, C., Puhlmann, F.: An agile BPM project methodology. In: Business
Process Management, pp. 291–306. Springer (2013)

25. Tsai, W.T., Song, W., Paul, R., Cao, Z., Huang, H.: Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing. In: COMPSAC.
pp. 554–559 (2004)

26. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. RE 11(1) (2006)

27. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.:
On the Suitability of BPMN for Business Process Modelling. In: 4th BPMN. pp.
161–176. Vienna, Austria (Sep 2006)


