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ABSTRACT
Blockchain is an emerging technology that enables new forms of de-
centralized software architectures, where distributed components
can reach agreements on shared system states without trusting a
central integration point. Blockchain provides a shared infrastruc-
ture to execute programs, called smart contracts, and to store data.
Since blockchain technologies are at an early stage, there is a lack
of a systematic and holistic view on designing software systems
that use blockchain. We view blockchain as part of a bigger system,
which requires patterns for using blockchain in the design of their
software architecture. In this paper, we collect a list of patterns for
blockchain-based applications. The pattern collection is categorized
into four types, including interaction with external world patterns,
data management patterns, security patterns and contract struc-
tural patterns. Some patterns are designed considering the nature
of blockchain and how it can be specifically introduced within real-
world applications . Others are variants of existing design patterns
applied in the context of blockchain-based applications and smart
contracts.
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1 INTRODUCTION
Blockchain is the technology behind Bitcoin [12], which is a digital
currency based on a peer-to-peer network and cryptographic tech-
niques. The blockchain provides immutable, append-only, shared
data storage, which only allows inserting transactions without up-
dating or deleting any existing ones, thus preventing any tampering
or revision of previously stored data on blockchain as long as the
majority of the network peers do not agree to allow such revision.
The blockchain enables decentralization as new forms of distributed
software architectures, where components can reach agreements
on the historical log of shared states for decentralized and transac-
tional data sharing, across a large network of untrusted participants
without relying on a central integration point.

Financial transactions are the first, but far from the only use case
being investigated for blockchain. Many start-ups, enterprises, and
governments [16] are exploring blockchain-based applications in
areas as diverse as supply chain, electronic health records, voting,
energy supply, ownership management, and protecting critical civil
infrastructure. Despite of the wide array of interest in blockchain
technology, there is a lack of a systematic and holistic view when
applying blockchain in the design of software applications.

Previous work has characterized blockchain from a software
architecture perspective as a software connector [19] that provides
a shared infrastructure for storing data and running programs
(known as smart contracts). Blockchain has unique properties in-
cluding immutability, non-repudiation, data integrity, transparency,
and equal rights. It also has two main limitations, namely, lack
of privacy and poor performance [19]. The taxonomy presented
in [20] discusses such properties for different types and configu-
rations of blockchain technology. To better leverage the positive
properties of blockchain and avoid limitations, more architectural
guidance on blockchain-based applications is needed.

In this paper, we propose a set of patterns for the design of
blockchain-based applications. In software engineering, a design
pattern is a reusable solution to a problem that commonly occurs

https://doi.org/10.1145/3282308.3282312
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within a given context during software design [3]. A design pattern
defines constraints that restrict the roles of architectural elements
(processing, connectors and data) and the interaction among those
elements. Adopting a design pattern causes trade-offs among qual-
ity attributes. Our pattern collection includes three patterns about
interaction between blockchain and the external world, four data
management patterns, three security patterns and five structural
patterns of smart contract. The pattern collection provides an archi-
tectural guidance for developers to build applications on blockchain.

The remainder of the paper is organized as follows. Section 2
presents a background of blockchain and smart contracts. Section 3
gives an overview of the pattern collection, followed by detailed
patterns discussed from Section 4 to Section 7. Related work on
blockchain-based applications and design patterns is discussed in
Section 8. Section 9 concludes the paper and outlines future work.

2 BACKGROUND
2.1 Blockchain
Blockchain is a data structure of an ordered list of blocks, which
"chained" back to the previous block through containing a hash of a
presentation of the previous block. Every block on blockchain con-
tains a list of transactions (possibly empty). Due to the security prop-
erties of hash function, the historical transactions on blockchain can
not be deleted or altered without invalidating the chain of hashes.
In addition to the design of the data structure, there are computa-
tional constraints and consensus protocols applied to the creation of
blocks. All together, blockchain can in practice prevent revision and
tampering of the information on blockchain. In blockchain network,
public key cryptography and digital signatures are used to iden-
tify accounts and authorize transactions submitted to a blockchain.
Fig. 1 gives an overview of blockchain data structure, blockchain
network and transaction life cycle.

A transaction is a data package that stores information for money
transfer, like sender, receiver, and monetary value, or the (compiled)
code of smart contracts, or parameters of function calls of smart
contracts. Section 2.2 discusses more on the concept of smart con-
tract. The life-cycle of a transaction starts from the transaction
being signed by its initiator using the private key, to authorize
the expenditure of the monetary value or the function call associ-
ated with the transaction. Some transactions require authorization
from a set of private keys corresponding to multiple addresses. The
signed transaction is sent to a node within the blockchain network.
The transaction is validated by the receiver. Algorithmic rules and
cryptographic techniques are used to check the integrity of the
transaction. If the transaction is valid and previously unknown to
the node, it is propagated to other nodes. These receivers validate
the transaction before further propagating it to their peers until
the transaction reaches all nodes within the network.

The process of appending new blocks to the blockchain data
structure is called Mining. Miners in a blockchain network are re-
sponsible for aggregating valid new transactions into blocks, adding
the blocks to the blockchain data structure, and propagating the
blocks to the blockchain network. Every new block is broadcast
across the blockchain network, where each node stores a replica of
the whole blockchain. For every new block with the latest set of
transactions, the whole network needs to reach a consensus about

whether to include the set of transactions into the blockchain. A
distributed consensus mechanism is used to govern the addition of
new blocks, which consists of the rules for validating and broadcast-
ing transactions and blocks, resolving conflicts, and the incentive
scheme. The consensus mechanism ensures all the new transac-
tions are valid, and that each valid transaction is added only once.
There are different consensus mechanisms, e.g. , Proof-of-work or
Proof-of-stake (see e.g. [20] for details). Proof-of-work is used by
prominent blockchain systems, like Bitcoin and Ethereum, which
can only offer probabilistic guarantees to their clients in terms of
the immutability of recorded transactions [17]. There is always a
chance that the most recent few blocks are replaced by a competing
chain fork.

When using a blockchain, one design decision is the deployment,
i.e. , whether to use a public blockchain, consortium/community
blockchain or private blockchain [20]. Most cryptocurrencies use
public blockchains, which can be accessed by anyone on the In-
ternet. In a cryptocurrency ecosystem, the users typically interact
with the blockchain by using a wallet. Wallet is a software pro-
gram to support money transfer and basic smart contract transfer
(e.g. , on Ethereum). Normally, a wallet runs a light node of the
cryptocurrency, which only downloads the block header rather
than the complete blockchain to validate the authenticity of new
transactions. Light nodes are easy to maintain and run. However, a
light node may leave the user vulnerable because it skips several
security steps. Using a public blockchain results in better infor-
mation transparency and auditability, but sacrifices performance
and has a different cost model compared with a conventional data
storage. It costs monetary value to store data or execute code on
a public blockchain. In a public blockchain, data privacy relies on
encryption or cryptographic hashes.

A consortium blockchain is used across multiple organizations.
The consensus process in a consortium blockchain is controlled
by pre-authorised nodes. The right to read the blockchain may be
public or may be restricted to specific participants. In a private
blockchain network, write permission is kept within one organi-
zation, although this may include multiple divisions of a single
organization. Consortium and private blockchain can be an in-
stantiation of a public blockchain with a permission management
component that authorises participants within the network.

Properties of Blockchain. The data contained in a committed trans-
action on blockckchain is seen as immutable in practice. The chain
of immutable cryptographically-signed historical transactions pro-
vides non-repudiation of the stored data. Cryptographic techniques
used by blockchain support data integrity, the public access pro-
vides data transparency, and equal rights allows every participant
to have the same ability to manipulate the data on blockchain.
Such rights can be weighted by the computational power (Proof-
of-work) or stake (Proof-of-stake) owned by a node. Trust of the
blockchain is built based on the interactions between nodes within
the blockchain network. The participants of a blockchain network
rely on the design of blockchain, the cryptographic techniques used
by blockchain and the blockchain network itself rather than relying
on trusted third-party to facilitate transactions. If a user interacts
with blockchain through using a wallet service, the service provider
is a third party trusted by the user.
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Figure 1: Blockchain overview

Limitations. Data privacy and scalability are the main two limita-
tions of public blockchains. Data privacy on public blockchain is
limited because there is no privileged user, and every participant
can join the network to access all the information on blockchain
and validate new transactions. There are scalability limits on (i)
the size of the data on blockchain, (ii) the transaction processing
rate, and (iii) the latency of data transmission and commits. La-
tency between submitting a transaction and it being committed on
a blockchain is affected by the consensus protocol. This is around 1
hour (10-minute block interval with time for inclusion and 5-block
confirmation) on Bitcoin, and around 3 minutes (14-second block
interval with 11 confirmation blocks) on Ethereum1. Times in prac-
tice can be even longer [17]. The number of transactions included
in each block is also limited by the bandwidth of nodes participat-
ing in the network (for Bitcoin the current bandwidth per block
is 1MB) [1]. Ethereum applies a so-called gas limit to blocks (gas
is the internal pricing unit for executing a transaction or storing
data), which limits the number and complexity of transactions that
can fit into a block. Note that all of these limitations are subject to
large efforts of ongoing work.

2.2 Smart Contract
The first generation of blockchains, like Bitcoin, provides a public
ledger to store cryptographically-signed financial transactions [15].
The tokens on Bitcoin blockchain are known as BTC. There is
very limited capability to support programmable transactions, and
only very small pieces of auxiliary data could be embedded in the
transactions (or attached to the tokens) to serve other purposes,
such as representing other digital assets or physical assets.

The second generation of blockchains provides a general-purpose
programmable infrastructure with a public ledger that records the
computational results. Programs, known as smart contracts [14], can
be deployed and run on a blockchain. Smart contracts can express
triggers, conditions and business logic [18] to enable more complex
programmable transactions. The signature of the transaction initia-
tor authorizes the data payload of a transaction or the creation or

1https://www.ethereum.org/

execution of a smart contract. A common simple example of a smart
contract-enabled service is escrow, which can hold funds until the
obligations defined in the smart contract have been fulfilled. Smart
contracts are pure functions by design, which cannot access the
state of external systems directly.

Smart Contract Languages. Script used by Bitcoin is a simple stack-
based scripting language2, which is intentionally designed not to
be Turing-complete. Script provides the flexibility to define condi-
tions required to spend the Bitcoin associated with the transactions,
for example, requiring multiple private keys to authorize the pay-
ment. Ethereum is currently the most widely-used blockchain that
supports general-purpose (Turing-complete) smart contracts. The
primary smart contract language used on Ethereum blockchain is
Solidity3. DigitalAsset4 proposed DAML5as a domain specific smart
contract language for financial institutes. Smart contracts running
on Hyperledger Fabric6 are called Chaincode, which can be written
in any programming language and executed in containers inside
the fabric context layer.

2.3 Blockchain as a Component of Application
System

The architecture of a software system, where blockchain is one of
the components, is shown in Fig. 2. In this system, blockchain is
responsible for storing and sharing data, and executing smart con-
tracts. The blockchain component might also have tokens as digital
currencies or representing other assets. Due to the limitations of pri-
vacy and performance, there are off-chain auxiliary databases used
in the system. First, private data is stored in an internal database.
Second, data with large size is stored in a separate data storage,
which could be a cloud service. There is a API layer between the
data storage layer and the applications using the blockchain, which
is same as with conventional technology. Key management is an
2https://en.bitcoin.it/wiki/Script
3https://solidity.readthedocs.io/
4http://www.digitalasset.com/
5http://hub.digitalasset.com/blog/introducing-the-digital-asset-modeling-language-
a-powerful-alternative-to-smart-contracts-for-financial-institutions
6https://hyperledger.org/projects/fabric

https://www.ethereum.org/
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Figure 2: Blockchain as a component within a software ar-
chitecture

essential component working with blockchain. Every participant
in a blockchain network has one or more private keys, which are
used by the participant to digitally sign the transactions relating to
the addresses of the participant. The security of these private keys
is very important. If the private key of a user is stolen, any other
user in the system can forge transactions from that user to spend
the assets belonging to the user, invoke functions of smart con-
tracts in their name. Blockchain also interact with other off-chain
components.

3 BLOCKCHAIN-BASED APPLICATION
PATTERN COLLECTION

In this section, we discuss the blockchain-based application pat-
tern collection, which currently includes fifteen design patterns
that shape the architectural elements and their interactions in
blockchain-based applications. Table. 1 gives an overview of these
patterns. Applying the patterns to an application can better align
it with the unique properties provided by blockchain, avoid its
limitations, and achieve other quality attributes.

The patterns about interaction between blockchain and the ex-
ternal world describe different ways for blockchain to communicate
data with the external world, including Oracle (Section 4.1), Reverse
oracle (Section 4.2) and Legal and smart contract pair (Section 4.3).
The four data management patterns are about managing data on
and off blockchain, including Encrypting on-chain data (Section 5.1),
Tokenisation (Section 5.2), Off-chain data storage (Section 5.3) and
State channel (Section 5.4). The three security patterns concern the
security aspect of the blockchain-based applications. Multiple au-
thorization (Section 6.1) and Off-chain secret enabled dynamic autho-
rization (Section 6.2) are aimed at adding dynamism to authorization
of transactions and smart contracts. X-confirmation (Section 6.3) is
a pattern that further increases the security of transactions. The
five contract structural patterns define the dependencies among
smart contracts and behaviour of smart contract. Smart contracts
on blockchain are immutable. Upgrading a smart contract to a new
version is a challenge which hinders the evolution of blockchain-
based applications. Contract registry (Section 7.1) and Data contract
(Section 7.2) are two patterns that aim to improve upgradability
of smart contracts. Two patterns aim to improve security of smart

contracts: Embedded permission (Section 7.3) and Factory contract
(Section 7.4). Finally, Incentive execution (Section 7.5) concerns the
maintenance of smart contracts.

In this paper we follow the extended pattern form from [11],
which includes the name of the pattern, a short summary, the con-
text, the problem statement, an explicit discussion of the forces
which make the problem difficult, the solution, its consequences,
and some examples of real-world known uses of the pattern. Forces
are identified with the corresponding quality attribute, as some-
times the solution will propose a trade-off between them. Regarding
the consequences, we distinguish the benefits and drawbacks. Fi-
nally, we discuss features only applicable to a certain deployment
of blockchain, such as monetary cost of data storage and code
execution.

4 INTERACTIONWITH EXTERNALWORLD
PATTERNS

Due to the unique properties and limitations of blockchain, the
main architectural consideration for a blockchain-based software
application is to decide what data and executable code (smart con-
tract) should be kept on-chain, and what should be kept off-chain.
Two factors need particular attention, namely performance and
privacy. Performance highly depends on the type of deployment
of the blockchain. For example, a consortium blockchain [20] can
be configured to achieve much better performance than a public
blockchain. As a component of a big software system, blockchain
needs to communicate data with other components within the
software system (Fig. 2).

4.1 Pattern 1: Oracle
Summary: Introduce the state of external systems into the closed
blockchain execution environment through the oracle. Fig. 3 is a
graphical representation of the pattern with the external oracle
solution approach.
Context: From the software architecture perspective, blockchain
can be viewed as a component or connector within a large software
system [19]. In the case the blockchain is used as a distributed
database for more general purposes other than financial services,
the applications built on blockchain might need to interact with
other external systems. Thus, the validation of transactions on
blockchain might depend on states of external systems.
Problem:The execution environment of a blockchain is self-contained.
It can only access information present in the data and transactions
on the blockchain. Smart contracts running on blockchain are pure
functions by design. The state of external systems are not directly
accessible to smart contracts. Yet, function calls in smart contracts
sometimes need to access state of the external world.

How can function calls in smart contracts be enabled to access
the state of the external world from within smart contracts?
Forces: The problem requires to balance the following forces:

• Closed environment. Blockchain is a secure, self-contained
environment, which is isolated from external systems. Smart
contracts on blockchain cannot read the states of the external
systems.
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Table 1: Overview of the Blockchain-based Application Pattern Collection.

Category Name Summary

Interaction
with External
World

Oracle Introducing the state of external systems into the closed blockchain execution environment.

Reverse oracle The off-chain components of an existing system rely on smart contracts running on a blockchain to
supply requested data and check required conditions.

Legal and smart
contract pair

A bidirectional binding is established between a legal agreement and a corresponding smart contract.

Data
Management

Encrypting on-chain
data

Ensure confidentiality of the data stored on blockchain by encrypting it.

Tokenisation Using tokens on blockchain to represent transferable digital or physical assets or services.

Off-chain data storage Use hashing to ensure the integrity of arbitrarily large datasets which may not fit directly on the
blockchain.

State channel Transactions that are too small in value relative to a blockchain transaction fee or that require much
shorter latency than can be provided by a blockchain, are performed off-chain with periodic recording
of net transaction settlements on- chain.

Security Multiple authorization A set of blockchain addresses which can authorise a transaction is predefined. Only a subset of the
addresses is required to authorize transactions.

Off-chain secret
enabled dynamic
authorization

Using a hash created off-chain to dynamically bind authority for a trans- action.

X-confirmation Waiting for enough number of blocks as confirmations to ensure that a transaction added into
blockchain is immutable with high probability.

Structural
Patterns of
Contract

Contract registry Before invoking a smart contract, the address of the latest version of the smart contract is located by
looking up its name on a contract registry.

Embedded permission Smart contracts use embedded permission control to restrict access to the invocation of the functions
defined in the smart contracts.

Data contract Store data in a separate smart contract.

Factory contract An on-chain template contract is used as a factory that generates con- tract instances from the template.

Incentive execution A reward is provided to the caller of a contract function for invoking it.

• Connectivity. In addition to the data found on the blockchain,
general-purpose applicationsmight require information from
external systems, for example, context information like geo-
location information, or weather data from a Web API7.

• Long-term availability and validity. While transactions on
blockchain are immutable, the external state used to vali-
date a transaction may change or even disappear after the
transactions were originally appended to the blockchain.

Solution:To connect the closed execution environment of blockchain
with the external world, a oracle is introduced to evaluate condi-
tions that cannot be expressed in a smart contract running within
the blockchain environment. A oracle is a trusted third party that
provides the smart contracts with information about the external
world. When validation of a transaction depends on external state,
the oracle is requested to check the external state and to provide

7https://openweathermap.org/api

the result to the validator (miner), which then takes the result pro-
vided by the oracle into account when validating the transaction.
The oracle can be implemented inside a blockchain network as a
smart contract with external state being injected into the oracle
periodically by an off-chain injector. Later, other smart contracts
can access the data from the oracle smart contract. A oracle can
be also implemented as a server outside the blockchain. Such an
external oracle needs the permission to sign transactions using its
own key pair on-demand. Extra mechanisms might be needed to
improve trustworthiness of the oracle, for example, a distributed
oracle based on multiple servers and M-of-N multiple signature.
Through using oracle, the validation of transactions is based on the
authentication of the oracle, rather than the external state.
Consequences:

Benefits:

• Connectivity.The closed execution environment of blockchain
is âĂĲconnectedâĂİ with external world through the oracle.

https://openweathermap.org/api
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The applications based on blockchain can access external
states through the oracle and use the external states to vali-
date transactions.

Drawbacks:
• Trust. Using oracle introduces a trusted third party into the
system. The oracle selected to verify the external state needs
to be trusted by all the participants involved in relevant
transactions.

• Validity. The external states injected into the transactions
can not be fully validated by miners. Thus, when miners
validate the transaction including external state, they rely
on the oracle to check the validity of the information from
external world. Long-term availability and validity. It could
happen that while transactions are immutable, the external
state used to validate themmay change after the transactions
were originally appended to the blockchain.

Related patterns: Reverse Oracle (Section 4.2)
Known uses:

• Oracle in Bitcoin is an instance of this pattern 8. Oracle
is a server outside the Bitcoin blockchain network, which
can evaluate user-defined expressions based on the external
state.

• A central oracle becomes a potential single point of failure
for the transactions relying on the oracle. To improve the
trustworthiness of the oracle, a distributed oracle can be in-
troduced. A distributed oracle contains several oracles that
provide the same functionality to check the external state.
All the oracles need to be trusted by the whole network.
In this case, a transaction that relies on external state can
use a multi-signature (M-of-N) schema that requires keys
from M out of N oracles to authorize a transaction. Orisi9
on Bitcoin maintains a set of independent oracles. Orisi al-
lows the participants involved in a transaction to select a
set of oracles and define the value of M before initiating a
conditional transaction.

8https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
9http://orisi.org/
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Validation result#Tx

Figure 4: Reverse Oracle Pattern

• Participants who wish to transact with each other on a
blockchain could rely on an ad hoc arbitrator trusted by all
the participants to resolve disputes or check external state.
An arbitrator may be a human with a blockchain account
who is able to sign transactions. Alternatively, an arbitrator
may be automated and validate transactions based on state
taken from the blockchain and the external world. For ex-
ample, Gnosis10 is a decentralized prediction market that
allows users to choose any oracle they trust, such as another
user or a web service, e.g. , for weather forecasts.

4.2 Pattern 2: Reverse Oracle
Summary: The reverse oracle of an existing system relies on smart
contracts running on blockchain to validate requested data and
check required status. Fig. 4 is a graphical representation of the
pattern.
Context: In a software system, where blockchain is one of the
components, the off-chain components might need to use the data
stored on the blockchain and the smart contracts running on the
blockchain to check certain conditions.
Problem: Some domains use very large andmature (or even legacy)
systems, which comply with existing standards. For such domains,
an non-intrusive approach is desired to leverage the existing com-
plex systems with blockchain without changing the core of the
existing systems.

How to integrate the blockchain within existing systems?
Forces: The problem requires to balance the following forces:

• Connectivity. Integrating blockchain into an existing system
to leverage the unique properties of blockchain.

• Simplicity. Introduce minimal changes to the existing system.

Solution:The unique ID of the transactions or blocks on blockchain
is a piece of data that can be easily integrated into the existing sys-
tems. Validation of the data can be implemented by smart contracts
running on blockchain. An off-chain component is required to
query the blockchain through using the ID of the data.

10https://gnosis.pm/

https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
http://orisi.org/
https://gnosis.pm/
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Consequences:
Benefits:
• Connectivity. The blockchain is integrated into an existing
system through adding the ID of the transaction as a piece
of data into the system, and using smart contracts to do data
validation.

Drawbacks:
• Non-intrusive. It’s not always possible to use blockchain in
a non-intrusive way depending on the extensibility of the
existing systems.Writing and reading blockchainmight need
changes to the existing system.

Related patterns: Oracle (Section 4.1)
Known uses:

• Identitii11 provides a solution to enrich the payments in bank-
ing systems with documents and attributes through using
blockchain. Identitii invents the concept of identity token
stored on a blockchain. Every payment is associated with
an identity token, which is used to exchange enriched infor-
mation about a payment. The identity token is exchanged
between the banks through being embedded into the SWIFT
protocol.

• Slock.it12 is aimed to build autonomous objects and an uni-
versal sharing network through using blockchain and IoT
devices, where the devices can sell or rent themselves, and
also pay for services provided by others. In terms of renting
a device, the availability information is stored on blockchain,
thus, validity checking can be done on blockchain.

4.3 Pattern 3: Legal and Smart Contract Pair
Summary: A bidirectional binding is established between a le-
gal agreement and the corresponding smart contract. Fig. 5 is a
graphical representation of the pattern.
Context: The legal industry is becoming digitized, for example,
using digital signatures has become a valid way to sign legal agree-
ments. The Ricardian contract [8] was developed in the mid 1990s
to interpret legal contracts digitally without losing the value of
the legal prose. Digital legal agreements need to be executed and
enforced.
Problem: An independent trustworthy execution platform trusted
by all the involved participants is needed to execute the digital legal
agreement.

How to bind a legal agreement to the corresponding smart con-
tract on a trusted execution environment to ensure a 1-to-1 map-
ping?
Forces: The problem requires to balance the following forces:

• Authoritative source. A 1-to-1 mapping is required between a
legal contract and its corresponding smart contract to make
the smart contract as the authoritative source of the legal
contract.

• Secure storage. Blockchain provides a trustworthy data stor-
age to keep the legal agreement.

11https://identitii.com/
12https://slock.it/
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Figure 5: Legal and Smart Contract Pair Pattern

• Secure execution. Blockchain also provides a trustworthy
computational platform that can execute digital agreements
to enforce certain conditions as defined in a legal contract.

Solution:
Blockchain can be an ideal trusted platform to run digital legal

agreements, which are bound with corresponding on-chain smart
contracts. The smart contract implements conditions defined in the
legal agreement. When deployed, there is a variable to store the
hash value of the legal agreement, but is initially a blank value. The
address of the smart contract is included in the legal agreement,
and then the hash of the legal agreement is calculated and added to
the contract variable. By binding a physical agreement with a smart
contract, the bridge between the off-chain physical agreement and
the on-chain smart contract is established. The two directional
binding makes sure that the legal agreement and smart contract
have a 1-to-1 mapping.

The smart contract digitizes the conditions defined within the
legal agreement. Thus, these conditions can be checked and en-
forced automatically by the smart contract. However, not all the
legal terms can be easily digitalized. The smart contract can also
enable automated regulatory compliance checking in terms of the
required information and process. However, the capability of com-
pliance checking might be limited due to the constraints of smart
contract programming language.
Consequences:

Benefits:
• Automation. Some of the conditions defined in the legal con-
tract, for example, a conditional payment, can be automati-
cally enforced by blockchain.

• Audit trail. Blockchain permanently records all historical
transactions related to the legal contract and the contract
itself. This immutable data enables auditing at anytime in
future.

• Clarification. Encoding legal terms expressed in natural lan-
guage into smart contracts will require to give them a clear
interpretation.

Drawbacks:
• Expressiveness. Smart contracts are written in programming
languages. The smart contract languages might have limited

https://identitii.com/
https://slock.it/
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expressiveness to express contractual terms of arbitrary com-
plexity. The capability of regulatory compliance checking
also depends on the expressiveness of the smart contracts.
A regulation may regulate the process, for example, what
should or should not be done by whom at what stage.

• Enforceability. If a public blockchain is used, there is no cen-
tral administering authority to decide a dispute, or perform
the enforcement of a court judgment.

• Interpretation. There might be different ways to interpret a
certain legal term and to encode them in the smart contract.
Ambiguity of natural language makes it a challenge to accu-
rately implement a certain legal term in a way that is agreed
upon by all the involved participants.

Related patterns: N/A
Known uses:

• OpenLaw13 is a platform that allows lawyers to make legally
binding and self-executable agreements on the Ethereum
blockchain. The legal agreement templates are stored on
a decentralized data storage, IPFS14. Users can create cus-
tomized contracts for specific uses.

• Smart Contract Template proposed by Barclays15 uses legal
document templates to facilitate smart contracts running on
Corda16 blockchain platform [4, 5].

• Specific proposals for the representation ofmachine-interpretable
legal terms have been explored in KWM’s project on digital
and analog (DnA) contracts17 and in the Accord Project18.

• An academic work [9] uses a logic-based language to define
smart contracts on blockchain.

5 DATA MANAGEMENT PATTERNS
This section discusses three data management patterns that manage
data on and off blockchain.

5.1 Pattern 4: Encrypting On-Chain Data
Summary: Ensure confidentiality of the data stored on blockchain
by encrypting it. Fig. 6 is a graphical representation of the pattern.
Context: For some applications on blockchain, there might be
commercially critical data that should be only accessible to the
involved participants. An example would be a special discount
price offered by a service provider to a subset of its users. Such
information should not be accessible to the other users who do not
get the discount.
Problem: The lack of data privacy is one of the main limitations of
blockchain. All the information on blockchain is publicly available
to the participants of the blockchain. There is no privileged user
within the blockchain network, no matter the blockchain is public,
consortium or private. On a public blockchain, new participants can
join the blockchain network freely and access all the information

13http://openlaw.io/
14https://ipfs.io/
15https://www.barclays.co.uk/
16https://www.corda.net/
17https://github.com/KingandWoodMallesonsAU/Project-DnA
18https://www.accordproject.org/
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Figure 6: Encrypting On-chain Data Pattern

recorded on blockchain. Any confidential data on public blockchain
is exposed to the public.
Forces: The problem requires to balance the following forces:

• Transparency. Every participant within a blockchain network
is able to access all the historical transactions on blockchain,
which is required to enable them to validate previous trans-
actions. The transactions on a public blockchain are also
accessible to everyone with access to the internet, simply
using tools like a blockchain explorer such as Etherscan19.

• Lack of confidentiality. Since all the information on blockchain
is publicly available to everyone in the network, commer-
cially sensitive data meant to be kept confidential should not
be stored on blockchain, at least not in plain form.

Solution: To preserve the privacy of the involved participants, sym-
metric or asymmetric encryption can be used to encrypt data before
inserting the data into blockchain. One possible design for sharing
encrypted data among multiple participants is as follows. First, one
of the involved participants creates a secret key for encrypting
data and distributes it during an initial key exchange. When one
of the participants needs to add a new data item to the blockchain,
they first symmetrically encrypt it using the secret key. Only the
participants allowed to access the transaction have the secret key
and can decrypt the information.
Consequences:

Benefits:
• Confidentiality. Using encryption, the publicly accessible
information on blockchain is encrypted, so that is useless to
anyone who does not hold the secret key.

Drawbacks:
• Compromised key. Both symmetric and asymmetric encryp-
tion require off-chain key management. If key management
is not done properly, it can lead to compromise and disclo-
sure of private or secret keys. If the required private key or
secret key is compromised, the encryption mechanism does

19http://etherscan.io

http://openlaw.io/
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https://github.com/KingandWoodMallesonsAU/Project-DnA
https://www.accordproject.org/
http://etherscan.io
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not guarantee the confidentiality nor the integrity of the
data.

• Access revocation. Revoking read access is a challenge after
the encrypted data has been published to the blockchain.
The encrypted data on blockchain is immutable. Thus, as
long as the participant keeps the secret key used to encrypt
the data, it has access to the encrypted data forever.

• Immutable data. Even if stored in encrypted form, the critical
data will remain in the blockchain forever. In addition to the
risk of key compromise, the encrypted data may be subject
to brute force decryption attacks at any time in the future,
or breakthroughs in technology like quantum computing
might render current encryption technologies ineffective. So
even if the data is considered to be secure with a given key
size when it is stored in the blockchain, this may no longer
be the case in the future.

• Key sharing. The encryption key needs to be shared off-chain
before submitting any relevant transaction to the blockchain
secretly. Although blockchain can be used as a software con-
nector [19] to communicate data, secret keys can not be
shared through blockchain because the shared key would be
publicly accessible if being communicated through blockchain.

Related patterns: Off-Chain Data Storage (Section 5.3)
Known uses:

• Encrypted queries from Oraclize20. Oraclize is a smart con-
tract running on Ethereum public blockchain, which pro-
vides a service to access state from external world. Oraclize
allows smart contract developers to encrypt the parameters
of their queries locally by using a public key before passing
them to a smart contract. The only one who can decrypt the
call parameters is Oraclize with the paired private key.

• Crypto digital signature suggested by MLGBlockchain21 to
encrypt data and share the data between the parties who
interact and transmit data through blockchain.

• Hawk [10] is a smart contract system that stores transactions
as encrypted data on blockchain to retain the privacy of
the transactions. The compiler of Hawk can automatically
generate a cryptographic protocol for a smart contract. The
involved participants interact with the blockchain following
the cryptographic protocol.

5.2 Pattern 5: Tokenisation
Summary: Using tokens to represent fungible goods for easier
distribution.
Context: The concept of tokenisation has emerged centuries ago
with the first currency systems. Tokenisation is a means to reduce
risk in handling high value financial instruments by replacing them
with equivalents, for example, the tokens used in casino. Tokens
can represent a wide range of goods which are transferable and
fungible, like shares, or tickets.
Problem: Tokens representing assets should be the authoritative
source of the corresponding assets.

20https://blog.oraclize.it/encrypted-queries-private-data-on-a-public-blockchain-71d893fac2bf
21https://mlgblockchain.com/crypto-signature.html

Forces: The problem requires to balance the following forces:
• Risk. Handling fungible financial instruments with high
value is risky, e.g., lost tokens cannot be replaced.

• Authority. Tokens should be the authoritative source of the
assets.

Solution: Blockchain provides a trustworthy platform to realise
tokenisation. There are different ways to implement tokenisation
using blockchain. Naive tokens on a blockchain (e.g., BTC on Bit-
coin, ETC on Ethereum) can be used to formulate a system where
the tokens represent monetary value or other physical assets. The
token is generally used to track title over the physical assets. Trans-
actions on blockchain record the verifiable title transfer from one
user to another. However, using the native token on blockchain
for tokenisation is limited because it can only implement the title
transfer of the physical assets, with limited conditions checking.

A more flexible way is to define a data structure in a smart con-
tract to represent physical assets. Tokenisation is a process starting
from an asset (e.g., money) is locked under a custody (e.g., a bank),
and gets represented in the cryptographic world through a token.
The ownership of the digital token matches the ownership of the
corresponding asset. The reverse process can take place by which
the user redeems the token to recover the value which is sitting
within the bank. A token on blockchain is the authoritative source
of the physical asset. By using smart contracts, some conditions
can be implemented and associated with the ownership transfer.
Consequences:

Benefits:
• Risk. Tokenisation reduces risk in handling high value finan-
cial instruments by replacing them with equivalents.

• Authority. Blockchain and smart contracts provide a trust-
worthy infrastructure to provide authorised tokens for the
corresponding assets.

Drawbacks:
• Integrity. Integrity of the tokens is guaranteed by the blockchain
infrastructure. But the authenticity of the corresponding
physical/digital asset is not guaranteed automatically.

• Standardisation. 24% of the existing financial smart contracts
on Ethereum uses this tokenisation pattern . Given the popu-
larity of this pattern, ERC2022 (and ERC77723 as an advanced
version) has been proposed as a fungible token standard that
describes the functions and events that a token smart con-
tract has to implement. The new proposed fungible tokens
should follow the standard.

• Legal processes for ownership. A token on a blockchain is not
necessarily the authoritative source of information about the
ownership of a physical asset. The owner of an asset may
be entitled to sell the asset without being required to create
a transaction on the blockchain. Also, legal processes such
as court orders and bankruptcy proceedings can change
the ownership of physical assets without any associated
transaction being recorded on the blockchain.

Related patterns: N/A
22https://theethereum.wiki/w/index.php/ERC20_Token_Standard
23https://eips.ethereum.org/EIPS/eip-777
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Known uses:
• Coloredcoin24 is an open source protocol for tokenizing digi-
tal assets on Bitcoin blockchain.

• Digix25 uses tokens to track the ownership of gold as a phys-
ical property.

5.3 Pattern 6: Off-Chain Data Storage

Summary: Use hashing to ensure the integrity of arbitrarily large
datasets which may not fit directly on the blockchain. Fig. 7 is a
graphical representation of the pattern solution.
Context: Some applications consider using the blockchain to guar-
antee the integrity of large amounts of data.
Problem: The blockchain, due to its full replication across all par-
ticipants of the blockchain network, has limited storage capacity.
Storing large amounts of data within a transaction may be impos-
sible due to the limited size of the blocks of the blockchain (for
example, Ethereum has a block gas limit to determine the number,
computational complexity, and data size of the transactions included
in the block). Data cannot take advantage of the immutability or
integrity guarantees without being stored on the blockchain.

How to store data of arbitrary size and take advantage of the
immutability and integrity guarantees provided by the blockchain?
Forces: The problem requires to balance the following forces:

• Scalability. Blockchain provides limited scalability because
every bit of data is replicated across all nodes, where it is
kept permanently.

• Cost. If a public blockchain is used, storing data on blockchain
costs real money, although the cost is a one-time cost to
write the data. This is in contrast to traditional distributed
data storage, like cloud, which charge based on the amount
of allocated storage space over time. A piece of data can
be stored on blockchain through being embedded into a
transaction, or as a variable of smart contract or as a log
event. Embedding data into a transaction is the cheapest way,
while storing data in a contract is more efficient to enable
manipulation, but can be less flexible due to the potential
constraints of the smart contract languages on the value
types and length [20]. Different blockchain has different cost
model for storing data.

• Size. There are limits of transaction size or block size. For
example, on Bitcoin blockchain, The default Bitcoin client
only relayedOP_RETURN transactions up to 80 bytes, which
was reduced to 40 bytes in February 201426. Ethereum has
a block gas limit that restricts the amount of gas which all
transactions in a block are allowed to use.

Solution: The blockchain can be used as a general-purpose repli-
cated database, as transactions logged in the blockchain can include
arbitrary data on some blockchain platforms. For data of big size
(essentially data that is bigger than its hash value), rather than stor-
ing the raw data directly on blockchain, a representation of the data
with smaller size can be stored on blockchain with other small sized
24http://coloredcoins.org/
25https://digix.global/
26https://github.com/bitcoin/bitcoin/pull/3737
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Figure 7: Off-chain Data Storage Pattern

metadata about the data (e.g., a URI pointing to it). The solution is to
store a hash value (also called digest) of the raw data on chain. The
value is generated by a hash function, e.g. one from the SHA-2 [13]
family, which maps data of arbitrary size to data of fixed size. Hash
function is a one-way function which is easy to compute, but hard
to invert given the output of a random input. If even one bit of the
data changes, its corresponding hash value would change as well.
The hash value is used for ensuring the integrity of the raw data
stored off-chain, and the transaction on blockchain that includes
the hash value guarantees the integrity of the hash value as well as
the original raw data from which the hash was derived.
Consequences:

Benefits:

• Integrity. Blockchain guarantees the integrity of the hash
value that represents the raw data. The integrity of the raw
data can be checked using the on-chain hash value.

• Cost. If a public blockchain is used, blockchain is utilized at
a lower cost (fixed cost as the size of the hash value is fixed)
for integrity of data with arbitrary size.

Drawbacks:

• Integrity. The raw data is stored off-chain, where the off-
chain data store might not be as secure as blockchain. The
raw datamay be changedwithout authorization. This change
will be detected thanks to the hash of the original data stored
on the blockchain. However, without additional measures, it
will neither be possible to recover the original data nor to
prevent the change from happening in the first place.

• Data loss. Since the raw data is stored off-chain, it may be
deleted or lost. Only its hash value remains permanently on
the blockchain.

• Data sharing. The on-chain data can be shared through using
blockchain platforms. Extra communicationmechanisms and
storage platforms are required for data sharing off-chain.

Related patterns: Proxy from [21]
Known uses:

http://coloredcoins.org/
https://digix.global/
https://github.com/bitcoin/bitcoin/pull/3737
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• Proof-of-Existence (POEX.IO27). This service allows entering
an SHA-256 cryptographic hash of a document into the Bit-
coin blockchain as a “proof-of-existence” of the document at
a certain time. The hash value guarantees the data integrity
of the document.

• Chainy28. This is a smart contract running on Ethereum
blockchain. Chainy stores a short link to an off-chain file
and its corresponding hash value in one place.

5.4 Pattern 7: State channel
Summary:Micro-payments transactions are too expensive to be
performed on-chain because the required transaction fee might be
higher than the monetary value associated with the transaction
assuming a public blockchain is used. Thus, micro-payments should
be exchanged off-chain while periodically recording settlements
for larger amounts on chain. Such a payment channel can be gener-
alized for arbitrary state updates for more general purposes other
than monetary value. Fig. 8 is a graphical representation of the
pattern.
Context: Micro-payments are payments that can be as small as
a few cents, e.g., payment of a very small amount of money to
a WiFi hot-spot for every 10 kilobytes of data usage. Blockchain
has potential to be used for such financial transactions with tiny
monetary value. The question is if it is necessary and cost effective
to store all the micro-payment transactions on blockchain.
Problem: The decentralized design of blockchain has limited per-
formance. Transactions can take several minutes or even one hour
(for Bitcoin blockchain) to be committed on the blockchain [17].
Due to the long commit time and high transaction fees on a pub-
lic blockchain (where fees are largely independent of the trans-
acted amount), it is often infeasible to store every micro-payment
transaction on the blockchain network. During a recent peak in
demand, the average fee per transaction has risen to the equiva-
lent of US$5529 on Bitcoin. On-chain transactions are suitable for
transactions with medium to large monetary value, relative to the
transaction fee.
Forces: The problem requires to balance the following forces:

• Latency. Blockchain transactions may take a long time to be
committed while users expect micro-payments to happen
instantaneously.

• Scalability. Blockchain has limited scalability because every
bit of data is replicated across all nodes, and kept perma-
nently.

• Cost. Storing data on a public blockchain costs real money.
The transaction fee of individual micro-payment transaction
might be higher than the monetary value associated with
the micro-payment transaction.

Solution: Storing every micro-payment transaction on blockchain
is infeasible in certain contexts due to the small monetary value
associated with it. Thus, a solution is to establish a payment channel
between two participants, with a deposit from one or both sides of
27https://poex.io/
28https://chainy.info/
29Recorded by https://bitinfocharts.com/comparison/bitcoin-transactionfees.html for
22 Dec 2017; accessed on 1/2/2018.
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the participants locked up as security in a smart contract for the
lifetime of the payment channel. The payment channel keeps the
intermediate states of the micro-payment off-chain, and only stores
the finalized payment on chain. The frequency of transaction set-
tlement depends on the use case, and agreement between the two
sides. For example, in scenarios around utilities, internet service
providers or electricity companies can establish payment channel
with their consumers for an agreed billing period, for example, a
month. As the consumer uses data or energy daily, the intermediate
state is stored in the channel until the end of the month, when the
channel is closed to finalize the payment of that month. A network
of micro-payment channels can be built where the transactions
transferring small values occur off-chain. The individual transac-
tions take place entirely off the blockchain and exclusively between
the participants, across multiple hops where needed. Only the final
transaction that settles the payment for a given channel or set of
channels is submitted to the blockchain. The technologies used to
implement state channel are specific to blockchain platform. For ex-
ample, Lightning network30 on the Bitcoin blockchain is a proposed
implementation of Hashed Timelock Contracts (HTLCs)31 with bi-
directional payment channels which allows secure payments across
multiple peer-to-peer channels. A HTLC is a type of payments that
use the features of Script, like hashlocks and timelocks, to require
that the receiver of a payment acknowledges receiving the payment
prior to a deadline by generating cryptographic proof.
Consequences:

Benefits:
• Speed. Without involving blockchain for every transfer, the
off-chain transactions can be settled without waiting for the
blockchain network to process the transaction, generate a
new block with the transaction and reach consensus, and
the desired number of confirmation blocks.

• Throughput.The number of off-chain transactions that can be
processed is not limited by the configuration of blockchain,
such as the block size, block interval, gas limit, etc., and thus

30https://lightning.network/
31https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
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a much higher throughput can be achieved than for on-chain
transactions.

• Privacy. Other than the final settlement transaction, the in-
dividual off-chain transactions do not show up in the public
ledger, thus, the detail of these intermediate off-chain trans-
actions is not publicly visible.

• Cost. If a public blockchain is used, only the final settle-
ment transaction costs transaction fee to be included in the
blockchain. Direct individual off-chain transactions do not
cost any money. Multi-hop transactions may cost small trans-
action fees, which are typically charged as a percentage of
the transacted amount.

Drawbacks:

• Trustworthiness. The individual off-chain micro-payment
transactions might not be as trustworthy as the on-chain
transactions because the micro-payment transactions are not
stored in an immutable data store. The intermediate state of
payment channels might be lost after the payment channels
are closed.

• Reduced liquidity. To establish a payment channel, money
from one or both sides of the channel needs to be locked up
in a smart contract for the lifetime of the payment channel.
The liquidity of the channel participants is thereby reduced.

• Wallet. A new wallet or extension to the existing wallet is
needed to support the micro-payment protocol.

Related patterns: Off-chain signatures from [7]
Known uses:

• The Lightning network uses an off-chain protocol to en-
able micro-payments of Bitcoin and several other crypto-
currencies. Micro-payments are enabled by establishing a
bidirectional payment channel through committing a fund-
ing transaction to the blockchain. This can be followed by
a number of micro-payment transactions that update the
distribution of the funds within the channel without broad-
casting transactions to the blockchain network. The payment
channel can be closed by broadcasting the final version of
the funding transaction to settle the payment.

• The Raiden network32 on the Ethereum blockchain is a simi-
lar solution as lightning network. The basic idea is to avoid
the consensus bottleneck by leveraging a network of off-
chain payment channels that allow to securely transfer mon-
etary value. Smart contracts are used to deposit value into
the payment channels.

• Orinoco33 is another payment channel solution built on
Ethereum blockchain. Other than the payment channels,
Orinoco also provides a payment hub for payment channel
management. However, the payment hub introduces an extra
party that needs to be trusted by both the sender and the
recipient of the payment channel.

32https://raiden.network/
33www.orinocopay.com/

• State channel on Ethereum34 and Gnosis Go35 offer a more
generalized form of state channels that support exchanging
state for general-purpose applications.

6 SECURITY PATTERNS
This section discusses three security patterns that mainly concern
the security aspect of the blockchain-based applications.

6.1 Pattern 8: Multiple Authorization
Summary: A set of blockchain addresses which can authorise a
transaction is pre-defined. Only a subset of the addresses is required
to authorize transactions. Fig. 9 is a graphical representation of the
pattern.
Context: In blockchain-based applications, activities might need
to be authorized by multiple blockchain addresses. For example,
a monetary transaction may require authorization from multiple
blockchain addresses.
Problem:

• The actual addresses that authorize an activity might not be
able to be decided due to the availability of the authorities.

Forces: The problem requires to balance the following forces:
• Flexibility. The actual authorities who authorize the transac-
tion can be from a set of pre-defined authorities.

• Tolerance of compromised or lost private key Authentication
on blockchain uses digital signature. However, blockchain
does not offer any mechanism to recover a lost or a compro-
mised private key. Losing a key results in permanent loss
of control over an account, and potentially smart contracts
that refer to it.

Solution: It would enable more dynamism if the set of blockchain
addresses for authorization are not decided before the correspond-
ing transaction being submited into the blockchain network, or
the corresponding smart contract being deployed on blockchain.
On the Bitcoin blockchain, a multi-signature mechanism can be
used to require more than one private key to authorize a Bitcoin
transaction. In Ethereum, smart contract can mimic multi-signature
mechanism. More flexibly, an M-of-N multi-signature can be used
to define that M out of N private keys are required to authorize
the transaction. M is the threshold of authorization. This on-chain
mechanism enables more flexible binding of authorities.
Consequences:

Benefits:
• Flexibility. This pattern enables flexible binding of authori-
ties, but depends on the availability of authorities when the
activity is proceeded.

• Lost key tolerant. One participant can own more than one
blockchain address to reduce the risk of losing control over
their smart contracts due to a lost private key. There could
be a function that can update the list of allowed authori-
ties, and the threshold of the authorization. In the case that

34http://www.jeffcoleman.ca/state-channels/
35https://forum.gnosis.pm/t/how-offchain-trading-will-work/63
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the update function also requires threshold-based authoriza-
tion, the list of the update addresses can be also updated
through authorization from at least the minimum number
of addresses.

Drawbacks:
• Pre-defined authorities. Although the pattern enables flexible
binding, all the possible authorities still need to be known
in advance of any decision or update.

• Lost key. At least M private keys among the N private keys
should be safely kept to avoid losing control.

• Cost of dynamism. If a public blockchain is used, updating
the list of authorities costs money, as does deploying the
logic for multiple authorities. Besides, it costs more to store
multiple addresses as the possible authorities than storing
only one.

Related patterns: Off-chain Secret Enabled Dynamic Authorization
(Section 6.2). An off-chain secret enabled dynamic authorization
pattern is used when the possible authorities are unknown before-
hand.
Known uses:

• MultiSignature mechanism provided by Bitcoin36.
• Multisignaturewallet, written in Solidity, running on Ethereum
blochchain and is available in the Ethereum DApp browser
Mist37.

6.2 Pattern 9: Off-Chain Secret Enabled
Dynamic Authorization

Summary: Using a hash created off-chain to dynamically bind
authority for a transaction. Fig. 10 is a graphical representation of
the pattern. This solution is also referred to as Hashlock.
Context: In blockchain-based applications, some activities need to
be authorized by one or more participants that are unknown when
a first transaction is submitted to blockchain.
36https://en.bitcoin.it/wiki/Multisignature
37https://github.com/ethereum/mist
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Problem: Sometimes, the authority who can authorize a given
activity is unknown when the corresponding smart contract is
deployed, or the corresponding transaction is submitted to the
blockchain. Blockchain uses digital signature for authentication
and transaction authorization. Blockchain does not support dy-
namic binding with an address of a participant which is not defined
in the respective transaction or smart contract. All accounts that
can authorize a second transaction have to be defined in the first
transaction before that transaction is added to the blockchain.
Forces: The problem requires to balance the following forces:

• Dynamism. Dynamic binding one or more unknown author-
ities with a second transaction representing an activity after
the first transaction submitted to blockchain.

• Pre-defined authorities. Using only on-chain mechanisms, all
the possible authorities are required to be defined before-
hand.

Solution: An off-chain secret can be used to enable a dynamic
authorization when the participant authorizing a transaction is
unknown beforehand. In the context of payment, for example, a
smart contract can be used as an escrow. When the sender deposits
the money to an escrow smart contract, a hash of a secret (e.g. a
random string, called pre-image) is submitted with the money as
well. Whoever receives the secret off-chain can claim the money
from the escrow smart contract by revealing the secret. With this
solution, the receiver of the money does not need to be defined
beforehand in the escrow contract. This can be generalized to any
transaction that needs authorization from a dynamically bound
participant. Note that since the secret is revealed, it cannot be
reused. One variant is to lock multiple transactions with the same
secret – by unlocking one, all of them are unlocked.
Consequences:

Benefits:
• Dynamism. This pattern enables dynamic binding of un-
known authorities after the transaction is added into the
blockchain.

https://en.bitcoin.it/wiki/Multisignature
https://github.com/ethereum/mist


EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber

• Lost key tolerant. No specific private key is required to au-
thorize transactions.

• Routability. This pattern has the useful property that once
the secret is revealed, any other transactions secured using
the same secret can also be opened. This makes it possible to
create multiple transactions that are all locked by the same
secret. This property is used by micro-payment channels
to enable multi-hop transfers where the money hosted by
every hop and secured by a same secret can be released after
the end receiver claims the money with the secret (i.e. the
secret is revealed). The secret can be exchanged through an
off-chain channel to every hop.

• Interoperability. There is no need for a special protocol to
exchange the secret. The secret can be exchanged in any
ways off-chain. It provides a mechanism for other systems
to trigger events on blockchain.

Drawbacks:
• One-off secret. The secret used in this pattern is a one-off se-
cret. Verification of the secret is on-chain. Thus, once a secret
is embedded in a transaction submitted to the blockchain,
the secret is revealed.

• Combination of signature and secret. Because this pattern has
the property that once the secret is revealed, any other trans-
actions secured using the same secret can also be opened,
sometimes the transaction protected by the secret should
also be associated with a public key so that both a correct
secret and an appropriate signature with the respective pri-
vate key are required to authorize the transaction. This is
applicable to the situation where a large set of authorities
are known beforehand, but not all of them are allowed to
authorize a certain activity/transaction. Thus, a hash secret
is used to dynamically bind one or multiple authorities from
the larger pre-defined set of authorities.

• Lost secret. The sender/initiator of a transaction takes the risk
of losing the off-chainsecret. If the secret is lost, the trans-
action cannot be authorized and being proceeded anymore.
In the case of money transfer, the money associated with
the transaction would be locked forever if the transaction
cannot be authorized properly.

Related patterns: Multiple authorization (Section 6.1). The multi-
ple authorization pattern is used when all the possible authorities
are known beforehand. Multiple authorization pattern is an on-
chain mechanism.
Known uses:

• Raiden network38is a network of off-chain payment channels
on top of Ethereum blockchain network, which enables se-
cure value transfer. The multi-hop transfer mechanism in
Raiden Network uses hashlocked transactions to securely
router payment through a middleman.

• In the Bitcoin ecosystem, atomic cross-chain trading39 allows
one crytocurrency (for example, Bitcoin) to be traded for
another cryptocurrency (for example, tokens on a Bitcoin
sidechain) using a off-chain hash secret.

38https://raiden.network/
39https://en.bitcoin.it/wiki/Atomic_cross-chain_trading

6.3 Pattern 10: X-Confirmation
Summary:Waiting for enough number of blocks as confirmations
to ensure that a transaction added into blockchain is immutable
with high probability. Fig. 11 is a graphical representation of the
pattern.
Context: Immutability of a blockchain using Proof-of-work (Nakamoto)
consensus is probabilistic immutability. There is always a chance
that the most recent few blocks are replaced by a competing chain
fork.
Problem: At the time a fork occurs, there is usually no certainty
as to which branch will be permanently kept in the blockchain
and which branches will be discarded. The transactions that were
included in the branches being discarded eventually go back to the
transaction pool and being added into a later block.
Forces: The problem requires to balance the following forces:

• Chain fork. Chain fork may occur on a blockchain using
proof-of-work consensus, like Bitcoin and Ethereum.

• Frequency of chain fork. Transaction handling and inter-block
time differs significantly from one blockchain to another.
A shorter inter-block time would lead to an increased fre-
quency of forks .

Solution: From the application perspective, one security strategy
is to wait for a certain number (X) of blocks to be generated af-
ter the transaction is included into one block. After X blocks, the
transaction is taken to be committed and thus perceived as im-
mutable [17]. The value of X can be decided by the developers of
the blockchain-based applications.
Consequences:

Benefits:
• Immutability. The more blocks being generated after the
block including the transaction, the higher probability of the
immutability of the transaction.

Drawbacks:
• Latency. Latency between submission and confirmation of a
transaction has been included on a blockchain is affected by
the consensus protocol and the X value of X-confirmation.
For example, this is around 1 hour (10 minute block interval
with 6-confirmation) on Bitcoin. The larger value of the X,
the longer the latency.

Related patterns: N/A
Known uses:

• Bitcoin uses 6-confirmation. The value 6 of Bitcoin blockchain
was chosen based on the assumption that an attacker is un-
likely to amass more than 10% of the total amount of comput-
ing power within Bitcoin network (measured by hash rate40),
and that a negligible risk of less than 0.1% is acceptable41.

• Ethereum recommends to wait for 11 confirmations after
block inclusion before assuming that a transaction is com-
mitted permanently with high probability42.

40https://blockchain.info/charts/hash-rate
41https://en.bitcoin.it/wiki/Confirmation
42https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/

https://raiden.network/
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://blockchain.info/charts/hash-rate
https://en.bitcoin.it/wiki/Confirmation
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
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7 CONTRACT STRUCTURAL PATTERNS
This section discusses five smart contracts patterns. Essentially,
smart contracts are programs running on blockchain, thus some
of the existing design patterns and programming principles for
conventional software environments are also applicable to smart
contracts. If a public blockchain is used, the structural design of
the smart contract has large impact on its execution cost. The cost
of deploying a smart contract depends on the size of the smart
contract(s) because the code is stored on blockchain, resulting in
a data storage fee that is proportional to the size of the smart
contract. Thus, a structural design with more lines of compiled code
costs more money. A consortium blockchain does not necessarily
have tokens/currency; therefore monetary cost is typically not an
issue for a consortium blockchain. However, blockchain size is still
a design concern because the total size of the blockchain keeps
growing as more blocks are appended to it and no block can ever
be detached from it, and every participant stores a full replica of
blockchain. Besides, different structural designs of smart contracts
may affect performance because more or less transactions may be
required.

7.1 Pattern 11: Contract Registry
Summary: Before invoking it, the address of the latest version of
a smart contract is located by looking up its name on a contract
registry. Fig. 12 is a graphical representation of the pattern.
Context: As any software application, blockchain-based applica-
tions need to be upgraded to new versions. To do so, the on-chain
functions defined in smart contracts need to be updated to fix bugs
as well as to fulfil new requirements.
Problem: Smart contracts deployed on blockchain cannot be up-
graded because the code of the smart contracts as a type of data,
stored on blockchain is immutable.
Forces: The problem requires to balance the following forces:

• Immutability. Every bit of data, including deployed smart
contracts, stored on blockchain is immutable.

• Upgradability. There is a fundamental need to upgrade all
but short-lived applications and their smart contracts over
time.

• Human-readable contract identifier. The identifier of a smart
contract on blockchain platforms, like Ethereum, is hexadec-
imal address, which is not human-readable.

On-chain Off-chain

Blockchain
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Contract

Contract1

name --> addr

name --> addr

name --> addr

Contract2 

Contract3 

Contract3’ 

X

Figure 12: Contract Registry Pattern

Solution: An on-chain registry contract is used to maintain a map-
ping between user-defined symbolic names and the blockchain
addresses of the registered contracts. The address of the registry
contract needs to be advertised off-chain. The creator of a contract
can register the name and the address of the new contract to the reg-
istry contract after the new contract being deployed. The invoker
of a registered contract retrieves the latest version of the new smart
contract from the registry contract. The corresponding functions
provided by the registered contract can be upgraded by replacing
the address of the old version contract in the registry contract with
the address of a new version without breaking the dependency
between the upgraded smart contract and other smart contracts
that depend on its functions. The address of a contract is stored as
a variable in the registry contract. The value of contract variables
can be updated. The registry contract can have a permission con-
trol module to maintain the writing permission. Note that all the
previous values of the variable are still stored on the blockchain.
Consequences:

Benefits:
• Human-readable contract name. The registry contract main-
tains a mapping between human-readable names and the
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hexadecimal addresses of the smart contracts. A human read-
able form of smart contract names is desired, for example,
to be exposed to the user interface. A human readable name
is also useful for developers.

• Constant contract name. The smart contract associated with
a registered name can be updated without changing its name.
This way dependencies relying on the name of the smart
contract do not get broken.

• Transparent upgradability. The smart contract associated
with a registered name could be replaced by a new version
without breaking the dependencies based on the human-
readable name.

• Version control. Version control can be integrated in the reg-
istry contract as well to allow a look-up based on the name
and version of a smart contract. Old versions of a smart
contract that are no longer needed should be terminated.

Drawbacks:
• Limited upgradability. Upgradability is still limited if the
functions defined in the smart contract are called by other
contracts. Although the implementation of the function can
be upgraded, the interface (that is function signature) cannot
be modified without breaking the link to dependent smart
contracts. Similar methods as for API / service interface man-
agement need to be implemented, e.g. through versioning
and depreciation flags.

• Cost. There is an additional cost to maintain a registry that
contains the mapping between the contract names and their
addresses. Furthermore, all the inter-contract function calls
require a registry look-up to find the latest version of the
smart contract to be invoked.

Related patterns: Embedded permission (Section refsec:permission)
can be used to define writing permission. Data contract (Section 7.2)
and this pattern can work together to further improve upgradability
of smart contracts.
Known uses:

• ENS43 is a name service on Ethereum blockchain, which is
implemented as smart contracts. ENS maintains a mapping
between both smart contracts on-chain and resources off-
chain and simple, human-readable names. ENS can be viewed
as a contract registry built in a blockchain platform, which is
accessible to everyone. A blockchain-based application can
also maintain a separate registry contract for the application.

• Regis44 is an in-browser application that makes it easy to
build, deploy and manage registries as smart contracts on
Ethereum blockchain. It allows user-defined key-value pairs.
It can be used to create a contract registry.

7.2 Pattern 12: Data Contract
Summary: Store data in a separate smart contract. Fig. 13 is a
graphical representation of the pattern.
Context: The need to upgrade a blockchain-based application over
time is ultimately necessary, so as the smart contracts used by the

43https://ens.domains
44https://regis.nu/

application. In general, logic and data change at different times and
with different frequencies. There are different ways to store a data
on blockchain, as discussed in Hash Integrity pattern (Section 5.3).
Problem: Storing data on blockchain is expensive and there is a
limitation on the amount of data and amount of computation a trans-
action can contain. In the context of upgrading smart contracts, the
upgrading transactions might contain a large data storage for copy-
ing the data from the old version of the smart contract to the new
version of the smart contract. Porting data to a new version might
even require multiple transactions, e.g. when the block gas limit on
Ethereum prevents an overly complex data migration transaction.
Forces: The problem requires to balance the following forces:

• Coupling. Smart contracts can live forever on blockchain if
not being explicitly terminated. If a smart contract is deac-
tivated in this way, the data stored in the smart contract
cannot be accessed through the smart contract functions any
more – although it can still be accessed with some effort, e.g.
for provenance or audit purposes.

• Upgradability. The need to upgrade the application and the
smart contracts supporting the application over time is ulti-
mately necessary for many applications.

• Cost. If a public blockchain is used, storing data on blockchain
costs money. Thus copying data from an old version of a
smart contract to a new version should be avoid or mini-
mized.

Solution: To avoidmoving data during upgrades of smart contracts,
the data store is isolated from the rest of the code. In the context
of blockchain, data could be separately stored in different smart
contracts to enable isolation. Depending on the circumstances of
the application, how large of a data store it needs and whether the
data structure is expected to change often, the data store could use
a strict definition or a loosely typed flat store. The more generic
and flexible data structure can be used by all the other logic smart
contracts and is unlikely to require changes. One example of a
generic data structure is a mapping to store SHA3 key and value
pairs.
Consequences:

Benefits:
• Upgradability. By separating data from the rest of the code,
the logic of the application is able to be upgraded without
affecting the data contract.

• Cost. Since the data is separated from the rest of the code,
there is no cost for migrating data when the application is
upgraded.

• Generality. If the data can be cleanly separated and general-
ized, there would be an additional benefit: the generic data
contract can be used by all related logic smart contracts.

Drawbacks:
• Cost. If a public blockchain is used, storing a piece of data
in a generic data structure costs more money than a strictly
defined data structure. For example, as mentioned earlier, a
generic data structure maintains a mapping between SHA3
key and value pairs, but a more strictly defined data structure
can be of smaller size, e.g. not requiring the key to be stored.

https://ens.domains
https://regis.nu/
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Querying the data is also less straightforward. This is the
cost of a generalized solution.

Related patterns: Contract registry (Section 7.1) and this pattern
can work together to further improve upgradability of smart con-
tracts.
Known uses:

• Chronobank45 is a blockchain project that tokenizes labour
and provides a market for professionals to trade their labour
time with businesses. It uses a smart contract with a generic
data structure as the data store used by all the other logic
smart contracts.

• Colony46, a platform for open organizations running on
Ethereum. Similar to Chronobank, Colony has a data con-
tract with a generic data structure.

7.3 Pattern 13: Embedded Permission
Summary: Smart contracts use an embedded permission control
to restrict access to the invocation of the functions defined in the
smart contracts. Fig. 14 is a graphical representation of the pattern.
Context: All the smart contracts running on blockchain can be
accessed and called by all the blockchain participants and other
smart contracts by default, because there are no privileged users
and, in the case of public blockchain, every participant can join the
network to access all the information and code stored and running
on blockchain.
Problem: A smart contract by default has no owner, meaning that
once deployed the author of the smart contract has no special
privilege on the smart contract. A permission-less function can be
triggered by unauthorized users accidentally. Such a permission-
less function becomes vulnerability of blockchain-based application.
For example, a permission-less function which is discovered in a
45https://chronobank.io/
46https://colony.io/
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Figure 14: Embedded Permission Pattern

smart contract library used by the Parity multi-sig wallet, caused
the freezing of about 500K Ethers47. 7% smart contract on public
Ethereum can be terminated without authority [17].
Forces: The problem requires to balance the following forces:

• Security. The functions defined in the smart contracts should
be called only by the authorized participants. Due to the
transparency of public blockchains, all the smart contracts
are also publicly available to everyone connecting to the
Internet. In contrast, in a conventional software system, the
internal logic is normally not visible to the end uses. In-
teraction with the software system is either through a user
interface or API, where it is possible to enforce access control
policies.

Solution: Adding permission control to every smart contract func-
tion to check permissions for every caller that triggers the functions
defined in the smart contract based on the blockchain addresses of
the caller. This can be done by checking the authorization of the
caller before executing the logic of the function: unauthorized calls
are rejected and the execution of the function terminated before
reaching the core logic of the function.
Consequences:

Benefits:
• Security. Only the participants and smart contracts that are
authorized by the smart contract can call the corresponding
functions successfully.

• Secure authorization. Authorization is implemented in smart
contracts running on blockchain, which leverages the prop-
erties provided by blockchain.

Drawbacks:
• Cost. On a public blockchain, extra code that implements the
permission control mechanism also has additional deploy-
ment and run-time cost.

• Lack of flexibility. Such permissions are defined in the smart
contract before its deployment, therefore they are difficult

47https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

https://chronobank.io/
https://colony.io/
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
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to change. However, permissions may be required to be dy-
namic. A mechanism is needed to support dynamic granting
and removal of permissions.

Related patterns: Multiple authorization (Section 6.1) and Off-
chain secret enabled dynamic authorization (Section 6.2) are different
ways to design authorization. And Authorization from [2]
Known uses:

• The Mortal contract discussed in the Solidity tutorial48 re-
stricts the permission of invoking the selfdestruct function
to the “owner” of the contract – where “owner” is a variable
defined in the contract code itself.

• The Restrict access pattern suggested in the Solidity tutorial49
uses modifier to restrict who can make modifications to the
state of the contract or call the functions of the contract.
Modifier is a mechanism to add a piece of code before the
function to check certain conditions.Modifier can make such
restrictions highly readable.

7.4 Pattern 14: Factory Contract
Summary: An on-chain template contract is used as a factory that
generates contract instances from the template. Fig. 15 is a graphical
representation of the pattern.
Context: Applications based on blockchain might need to use
multiple instances of a standard contract with customization. Each
contract instance is created by instantiating a contract template.
For example, in a business process management system, each of
the business process instances might be represented by a smart
contract being generated from a contract template representing the
business process model [18]. The template can be stored off-chain
in a code repository, or on-chain, within its own smart contract.
Problem: Keeping the contract template off-chain cannot guaran-
tee consistency between different smart contract instances created
from the same template because the source code of the template
can be independently modified.
Forces: The problem requires to balance the following forces:

• Dependency management. Storing the source code of smart
contract off-chain in a code repository introduces the is-
sue of integrating more systems into the blockchain-based
application.

• Secure code sharing. Blockchain can be used as a secure plat-
form to share code of smart contracts. As opposed to a tradi-
tional code repository, changes of code deployed on a smart
contract can be strictly limited or prohibited.

• Deployment. If a public code repository, like Github, is used
to store the source code of a smart contract, a component is
needed to implement the function of deploying smart con-
tract on blockchain, otherwise, the end users need to under-
stand how to deploy smart contracts by sending transactions
with the customized source code of the contract definition.

Solution: Smart contracts are created from a contract factory de-
ployed on blockchain. The factory contract is deployed once from
48http://solidity.readthedocs.io/en/develop/contracts.html
49http://solidity.readthedocs.io/en/develop/common-patterns.html
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Figure 15: Factory Contract Pattern

the off-chain source code. The factory may contain the definition of
multiple smart contracts. Smart contract instances are generated by
passing parameters to the contract factory to instantiate customized
smart contract instances. Factory contract is analogous to a Class
in an object-oriented programming language. Every transaction
that generates a smart contract instance essentially instantiates
an object of the factory contract class. This contract instance (the
object) will maintain its own properties independently of the other
instances but with a structure consistent with its original template.
Consequences:

Benefits:
• Security. Keeping the factory contract on-chain guarantees
the consistency of the contract definition.

• Efficiency. If the contract definition is kept on-chain in a
factory contract, smart contract instances are generated by
calling a function defined in the factory contract.

Drawbacks:
• Deployment cost. If a public blockchain is used, using factory
contract requires extra cost to deploy the factory contract.

• Function call cost. If a public blockchain is used, creating
a new smart contract instance requires extra cost to call a
function defined in the factory contract.

Related patterns: Contract registry (Section 7.1). A contract reg-
istry can be used to store the addresses of all the smart contract
instances generated from a factory contract. The factory and in-
stance registry can be implemented in the same contract, although
that limits upgradability.
Known uses:

• A tutorial from Ethereum developers50 about how to create
a contract factory from which smart contract instances can
be created.

50https://ethereumdev.io/manage-several-contracts-with-factories/

http://solidity.readthedocs.io/en/develop/contracts.html
http://solidity.readthedocs.io/en/develop/common-patterns.html
https://ethereumdev.io/manage-several-contracts-with-factories/
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• Factory pattern has been applied in a real-world blockchain-
based health care application [21].

• The business process management system in an academic
work [18] uses a contract factory to generate process in-
stances.

7.5 Pattern 15: Incentive Execution
Summary: Reward is provided to the caller of the contract function
for invoking the execution. Fig. 16 is a graphical representation of
the pattern.
Context: Smart contracts are event-driven programs, which can-
not execute autonomously. All the functions defined in a smart
contract need to be triggered either by a transaction from external
account or another smart contract to execute. Other than the func-
tions that provide regular services to users, some functions need to
run asynchronously from regular user interaction, for example, to
clean up the expired records, or make dividend payouts etc. Such
functions usually involve a time, after which the function should
start.
Problem: Users of a smart contract have no direct benefit from
calling the accessorial functions. If a public blockchain is used, exe-
cuting these functions causes extra monetary cost. Some accessorial
functions are expensive to execute.
Forces: The problem requires to balance the following forces:

• Completeness. The regular services provided by a smart con-
tract are supported by some accessorial functions.

• Cost. Execution of accessorial functions causes extra costs
from the users.

Solution: Reward the caller of a function defined in a smart con-
tract for invoking the execution, for example, sending back a per-
centage of payout to the caller to reimburse the (gas) execution
cost.
Consequences:

Benefits:

• Completeness. The execution of the accessorial functions
helps to complete the regular services provided by the smart
contract.

• Cost. The users, who spends extra to execute the accessorial
functions, are compensated by the reward associated with
the execution.

Drawbacks:
• Unguaranteed execution. Execution cannot be guaranteed
even with incentive. Thus, another option is to embed the
logic of accessorial functions into other regular functions
that users have to call to use the services.

Related patterns: N/A
Known uses:

• Regis51 is an in-browser tool for developers to create smart
contracts representing registries on Ethereum. The functions
that clean up the expired records provide incentive for users
to execute them.

• Ethereum alarm clock52 is a service provided by a smart con-
tract running on Ethereum. It facilitates scheduling function
calls for a specified block in the future and provides incentive
for users to execute the scheduled function.

8 RELATEDWORK
The following works collected a few design patterns of smart con-
tracts or blockchain-based applications. [2] conducts an empirical
analysis on smart contracts supported by different blockchain plat-
forms. The paper focuses on the two most widespread platforms,
Bitcoin and Ethereum. Nine common programming patterns are
identified in Solidity-based smart contracts by manually inspecting
the publicly available source code. The identified programming
patterns include Token, Authorization, Oracle, Randomness, Poll,
Time constraint, Termination, Math and Fork check. [21] applies
four existing object-oriented software patterns to smart contract
programming in the context of a blockchain-based health care ap-
plication. The applied software patterns include Abstract factory,
Flyweight, Proxy, and Publisher-subscriber. [7] proposes five pat-
terns for blockchain-based applications focusing on what data and
computation should be on-chain and what should be kept off-chain,
which include Challenge response pattern, Off-chain signatures pat-
tern, Content-addressable storage pattern, Delegated computation
pattern, and Low contract footprint pattern.

Compared with the existing works, our paper covers system-
level design patterns about interaction between blockchain and
other components within a big software system, data management
patterns, security patterns, and structural patterns for smart con-
tracts. Some structural patterns are new and some are modifications
of the existing design patterns. More importantly, we provide use
cases from the real world with each of the patterns. There is some
overlap between the existing works and our paper. For example the
Proxy pattern from [21] is a more generic pattern compared with
our Off-chain data storage pattern. The Off-chain signatures pattern
from [7] is similar to our State channel pattern. The Authorization
pattern from [2] is similar to our Embedded permission pattern.
51https://regis.nu/
52http://www.ethereum-alarm-clock.com/

https://regis.nu/
http://www.ethereum-alarm-clock.com/


EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber

9 CONCLUSIONS
We view the blockchain as a fundamental building block of large-
scale decentralized software systems. For effective use of blockchain
to this end, patterns are needed that show how to make good use
of the blockchain in the design of systems and applications. In this
paper, we propose a pattern collection for blockchain-based applica-
tions. Our pattern collection includes three patterns about interac-
tion between blockchain and the external world, four data manage-
ment patterns, three security patterns and six contract structural
patterns. The pattern collection provides an architectural guidance
for developers to build applications on blockchain. Some patterns
are designed specifically for blockchain-based applications consid-
ering the unique properties of blockchain. Others are variants of
existing software patterns applied to smart contracts. We plan to
illustrate how to implement these patterns in the context of specific
blockchain platforms and how to apply these patterns within a real
world applications in our future work.
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