Specification Patterns from Research to Industry:
A Case Study in Service-Based Applications

Carlo Ghezzi
DEEPSE group - DEI
Politecnico di Milano

Milano, Italy
ghezzi@elet.polimi.it

Domenico Bianculli
Faculty of Informatics
University of Lugano
Lugano, Switzerland
domenico.bianculli@usi.ch

Abstract—Specification patterns have proven to help devel-
opers to state precise system requirements, as well as formalize
them by means of dedicated specification languages. Most of the
past work has focused its applicability area to the specification
of concurrent and real-time systems, and has been limited to
a research setting. In this paper we present the results of our
study on specification patterns for service-based applications
(SBAs). The study focuses on industrial SBAs in the banking
domain. We started by performing an extensive analysis of
the usage of specification patterns in published research case
studies — representing almost ten years of research in the area
of specification, verification, and validation of SBAs. We then
compared these patterns with a large body of specifications
written by our industrial partner over a similar time period.
The paper discusses the outcome of this comparison, indicating
that some needs of the industry, especially in the area of
requirements specification languages, are not fully met by
current software engineering research.

Keywords-specification patterns; specification languages; re-
quirements specifications; services

I. INTRODUCTION

The concept of pattern has been initially proposed in the
domain of architecture by C. Alexander [1], to represent
“the description of a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice”.

This idea of pattern has then been adopted in software
engineering with the concept of design patterns [2], as
reusable solutions for recurring problems in software de-
sign. Subsequently, the concept of design patterns has been
embraced in different sub-domains of software engineering,
from architectural patterns to reengineering patterns, includ-
ing property specification patterns.

Property specification patterns [3] have been proposed in
the late ‘90s in the context of finite-state verification, as
a means to express recurring properties in a generalized
form, which could be formalized in different specification
languages, such as temporal logic. Specification patterns
aimed at bridging the gap between finite-state verification

Faculty of Informatics
University of Lugano
Lugano, Switzerland

cesare.pautasso@usi.ch

Patrick Senti
Information Technology
Credit Suisse AG
Ziirich, Switzerland
patrick.senti@ credit-suisse.com

Cesare Pautasso

tools (e.g., model checkers) and practitioners, by providing
the latter with a powerful instrument for writing down
properties to be fed to a formal verification tool.

Given the origin of property specification patterns, most
of past work has focused its applicability area to the spec-
ification (and the verification) of concurrent and real-time
systems (see, for example, [4]), with limited applications
outside the research setting.

In the last years, open software [5] systems such as
service-based applications (SBAs) have emerged, introduc-
ing new engineering challenges due to their dynamic and
decentralized nature. One of these research challenges is
related to the specification, verification and validation of
SBAs [6]. At the same time, service-oriented architectures
(SOAs) have gained a lot of attention in enterprises, which
started to adopt them for the integration of their information
systems [7]. However, to the best of our knowledge, the re-
search literature on specification, verification and validation
of SBAs has presented limited evidence of its applicability
to and suitability for industrial-level case studies.

One of the questions that we asked ourselves during
our research is whether existing requirements specification
languages are expressive enough to formalize common re-
quirements specifications used in industry. In particular, we
are interested in evaluating the use of specification patterns
for expressing properties of industrial SBAs, to assess if
existing and well-known specification patterns are adequate
or not. If this is not the case, our goal is to gather substantial
evidence for new specification patterns and/or language
constructs required to support their practical use in industrial
settings.

In this paper we present the results of our study on the
use of specification patterns in SBAs. The study has been
performed by analyzing the requirements specifications of
two sets of case studies. One set was composed of case
studies extracted from research papers in the area of specifi-
cation, verification and validation of SBAs, which appeared
in the main publishing venues of software engineering and
service-oriented computing within the last 10 years. The
other set was composed of case studies corresponding to

service interfaces written over a similar time period and used
within the SBAs developed by our industrial partner, which
operates in the banking domain.

During the analysis, we matched each SBA requirements
specification against the patterns belonging to the specifica-
tion pattern systems we selected from the research literature.
When a match was not possible, we tried to classify the re-
quirements specification according to a new pattern system,
specific to the service provisioning domain, that we had been
building during the matching process. Finally, we compared
the results, in terms of matched patterns, for the research
and the industrial case studies.

Anticipating the results of the study, which are presented
in detail in the paper, we can state that the comparison of
the patterns usage between the research and the industrial
case studies shows that: a) the majority of requirements
specifications stated in industrial settings refers to specific
aspects of service provisioning, which can be characterized
as a new class of specification patterns; b) the specification
patterns proposed in the research literature are barely used
in industrial settings.

These considerations indicate that some needs of the
industry are not fully met by software engineering research.
This suggests that new research directions in the areas
of requirements specification languages and of the related
verification techniques should be explored. The outcome
of this research has the potential of making it possible to
provide industry with a holistic solution, made of suitable
specification language(s) and related verification tools, to be
integrated into the quality assurance process of SBAs.

The rest of this paper is organized as follows. Section II
illustrates the specification patterns considered in this survey.
Section III describes the methodology used to conduct the
survey and presents its results, which are then discussed in
Section IV. Related work is presented in Section V, while
Section VI concludes the paper.

II. A BIRD’S EYE VIEW OF SPECIFICATION PATTERNS

In this section we summarize the patterns we have used
to classify the surveyed service specifications. We have
grouped them in four classes: the first three groups corre-
spond to systems of specification patterns well-known in the
software engineering research community, but not necessar-
ily used in the context of SBAs, while the last one includes
patterns that are more specific to service provisioning. For
each pattern we include a brief description as well as a
simple property expressed using the pattern; in the sample
properties, we use the letters P, S, T, and Z to denote events
or states of a system execution.

The “D” Group

The first group corresponds to the property specifica-
tion pattern system originally proposed by Dwyer et al.

in [3]. This system includes nine parameterizable, high-
level, formal specification abstractions. These patterns can
be combined with five scopes (“global”, “before”, “after”,
“between”, and “after until”), to indicate the portions of a
system execution in which a certain pattern should hold.
Note that in the rest of the paper, we do not distinguish
among the different scopes with which a certain pattern has
been used, and report usage data aggregated over all possible
scopes. The patterns are':

Absence (D1) describes a portion of a system’s execution
that is free of certain events or states, as in “it is never the
case that P holds”.

Universality (D2) describes a portion of a system’s exe-
cution that contains only states that have a desired property,
as in “it is always the case that P holds”.

Existence (D3) describes a portion of a system’s execu-
tion that contains an instance of certain events or states, as
in “P eventually holds”.

Bounded existence (D4) describes a portion of a sys-
tem’s execution that contains at most a specified number
of instances of a designated state transition or event, as in
“it is always the case that the transitions to state P occur at
most 2 times”.

Precedence (DS) describes relationships between a pair
of events/states, where the occurrence of the first is a
necessary pre-condition for an occurrence of the second, as
in “it is always the case that if P holds, then S previously
held”.

Response (D6) describes cause-effect relationships be-
tween a pair of events/states, where an occurrence of the
first must be followed by an occurrence of the second, as
in “it is always the case that if P holds, then S eventually
holds”.

Response chains (D7) is a generalization of the response
pattern, as it describes relationships between sequences of
individual state/events, as in “it is always the case that if P
holds, and is succeeded by S, then T eventually holds after
S”.

Precedence chains (D8) is a generalization of the prece-
dence pattern, as it describes relationships between se-
quences of individual state/events, as in “it is always the case
that if P holds, then S previously held and was preceded by
T”.

Constrained chain patterns (D9) describes a variant of
response and precedence chain patterns that restricts
user specified events from occurring between pairs of
states/events in the chain sequences, as in “it is always the
case that if P holds, then S eventually holds and is succeeded
by T where Z does not hold between S and T”.

The “R” Group

The second group of patterns has been proposed by Kon-
rad and Cheng [8] in the context of real-time specifications.

'A detailed description is available at http://patterns.projects.cis.ksu.edu.

This pattern system includes five patterns (and the same five
scopes as in [9]) as well as a structured English grammar that
supports both qualitative and real-time specification patterns.
The five patterns are:

Minimum duration (R1) indicates the minimum
amount of time a state formula has to hold once it becomes
true, as in “it is always the case that once P becomes
satisfied, it holds for at least k time units”.

Maximum duration (R2) describes that a state formula
always holds for less than a specified amount of time, as in
“it is always the case that once P becomes satisfied, it holds
for less than k time units”.

Bounded recurrence (R3) indicates the amount of time
in which a state formula has to hold at least once, as in “it
is always the case that P holds at least every k time units”.

Bounded response (R4) indicates the maximum amount
of time that passes after a state formula holds until another
state formula becomes true, as in “it is always the case that
if P holds, then S holds after at most k time units”.

Bounded invariance (R5) indicates the minimum
amount of time a state formula must hold once another
state formula is satisfied, as in “it is always the case that if
P holds, then S holds for at least k£ time units”.

The “G” Group

Another system of real-time specification patterns was
developed, around the same time as the previous one,
by Gruhn and Laue [10]. The system includes the actual
patterns, certain types of combined events that can be used
within specifications, and scopes that determine patterns
validity. As for scopes, the authors support the possibility
to express that a property holds before, after, and until a
certain number of time units (possibly zero) have passed
since the last occurrence of a certain event. The patterns
are:

Time-bounded existence (G1) is the timed version of
pattern D3, meaning that it can express properties such as
“starting from the current point of time, P must occur within
k time-units”.

Time-bounded response (G2) represents the same pat-
tern as R4.

Precedence with delay (G3) represents, together with
the next pattern, the timed version of pattern D5. In this
first variant, it can state properties such as “P must always
be preceded by S and at least k time units have passed since
the occurrence of S”.

Time-restricted precedence (G4) is the second timed
variant of pattern D5; it can express properties such as “P
must always be preceded by S and must occur within at
most k time units since the occurrence of S”.

The “S” Group

This group combines the patterns we found in the litera-
ture dealing with SBAs specifications, which do not appear

in the pattern systems described above; for this reason, we
group them all together under service provisioning patterns.

Average response time (S1) is a variant of the bounded
response pattern (R4) that uses the average operator to
aggregate the response time over a certain time window.

Counting the number of events (S2) is used (see, for
example, [11]) to express common non-functional require-
ments such as reliability (e.g., “number of errors in a given
time window”) and throughput (e.g., “number of requests
that a client is allowed to submit in a given time window”).

Average number of events (S3) is a variant of the pre-
vious pattern that states the average number of events
occurred in a certain time interval within a certain time
window, as in “the average number of client requests per
hour computed over the daily business hours”.

Maximum number of events (S4) is another variant of
the S2 pattern that aggregates events using the maximum
operator, as in “the maximum number of client requests per
hour computed over the daily business hours”.

Absolute time (S5) indicates events that should occur at
a time that satisfies an absolute time constraint, as in “if the
booking is done in the first week of March, a discount is
given” (taken from [12]).

Elapsed time (S6) indicates the time elapsed since the
last occurrence of a certain event.

Data-awareness (S7) is a pattern denoting properties
that refer to the actual data content of messages exchanged
between services as in “every ID present in a message cannot
appear in any future message” (taken from [13]).

III. THE SURVEY

In our study, we extracted specification patterns for SBAs
by analyzing examples and case studies both from the
research literature and from industry.

We analyzed the requirements specifications for the
SBA(s) described in each example or case study, and
manually classified each specification to match the patterns
defined in the previous section. The specifications were in
many forms: some were expressed using a specification for-
malism (e.g., a temporal logic), while others were expressed
in the English natural language. When a specification could
not be easily matched with a pattern, we used the criteria
proposed in [9] to still count a specification as a match:
a) formal equivalence; b) equivalence by parameter substi-
tution; c) variant of a pattern; d) wrong formal specification
with matching prose description.

Note that a single requirements specification may match
more than one pattern; for example, a requirement such as
“if a message with a red code alert is received three times
for the same patient during a time span of a week, then
doctors should send a confirmation for the hospitalization
of that patient within a hour from the reception of the last
alert message” is an instantiation of patterns R4 (bounded
response time), S2 (counting) and S7 (data-awareness).

2011 | [| 24
2009 | ————
2008 | ——
2007 | ———
2006 | —— -
2005 | —— '
2004 | |e—
2003 | g -
2002 f i,
2001 1°
2000 | o1 :Research literature
Industry
number of case studies
Figure 1. Number of case studies considered per year

The set of case studies we considered spans over more
than ten years, as shown in Figure 1. Overall, we consid-
ered 104 case studies from the research literature and 100
industrial ones.

In the rest of this section we describe, for each of the
two categories of case studies, the data sources and the data
themselves.

A. Research Literature Data

The research case studies have been extracted from pa-
pers? published between 2002 and 2010; the reason for
choosing 2002 as the left bound is that research in the
area of (Web) SBAs originated around that time. As pub-
lication venues to analyze, we considered the main confer-
ences in software engineering (ASE, FASE, SIGSOFT FSE,
ICSE), the main conferences in service-oriented computing
(ECOWS, ICSOC, ICWS, SCC, SERVICES, SOCA, WS-
FM, WWW), the major journals in the two areas (respec-
tively, ACM TOSEM and IEEE TSE for software engineer-
ing, and ACM TWEB and IEEE TSC for service-oriented
computing). For each of these venues, we selected papers on
specification, validation, and verification of SBAs; from this
set, subsequently, we only considered papers with at least
one case study with at least one requirements specification®.

2The complete bibliography of papers considered in this study is available
in PDF and BIBTEX format on the authors’ web site.

3In few cases, we also considered papers that included at least one
requirements specification formulated in a general way, i.e., not related
to a specific example or case study.

Table 1
NUMBER OF PAPERS CONSIDERED, PER SCIENTIFIC VENUE, PER YEAR

2003
2004

venue

ASE
ECOWS
FASE

FSE

ICSE
ICSOC
ICWS

SCC
SERVICES
SOCA
WSEM
WWWwW
TOSEM
TSE
TWEB
TSC - -
other 1

| coo | o 2002

| Ocoocoo~

| == wo o ——o| 2005

| ©O—= W— 0O OO —

|l ohrocoococooo| 2006

| oo o |
| oo o |
| SO == |
| SO == |
| SO =1 |

Nl cocooN—~ | —mwROoOo oo | 2007
NOOOCOON| ©O—=rmm—=m——=oo| 2008
WNONOO—~OO—N—O—o o | 2009

[\
[\
W
oo

ClvMo—m—m—~ocococoo~=~—o0—=o0o—=o]| 2010

total 1 3

,_
(=)
—_
~
—_
W
—_
o
—_
~
—_
W

Moreover, we also included other papers on specification,
verification, and verification of SBAs that we were aware of
and that had appeared at other venues; however, these venues
have not been systematically surveyed. An overview of the
number of papers considered, for each venue, is shown in
Table I; note that the values displayed in the table on the row
labeled “total” do not match the values shown in Figure 1
because in some cases the same paper illustrated more than
one case study.

Although we analyzed 104 case studies, we counted only
36 distinct examples, i.e., in many cases, the same example
has been used in different case studies across various pa-
pers. The top four recurring examples are “loan approval”
(13 times), “travel agency” (12 times), “online shopping”
(11 times), and “car rental” (8 times).

Out of these case studies, we analyzed and classified 290
requirements specifications. We successfully matched 272
specifications against the patterns presented in Section II;
the pattern usage distribution is shown in Table II.

A portion of these data (the group corresponding to
patterns D1-D8, representing the 63% of the specifications)
can be compared with existing data available in literature. In-
deed, reference [9] presents the usage frequency for patterns
in the “D” group, extracted from a set of 511 matched spec-
ifications belonging to various application domains, such
as hardware and communication protocols, control systems,
and distributed object systems. The comparison of our data
about patterns D1-D8, with respect to the data presented
in [9] is shown in Figure 2. Despite different rankings,
the five most common patterns are the same (D1, D2, D3,
D5, and D6); moreover, the most common pattern is D6
(response), with a similar usage frequency in both data sets.

Table II
PATTERNS USAGE IN RESEARCH SPECIFICATIONS

pattern occurrence distribution %
D6 76 27.9
R4 52 19.1
S7 47 17.3
D5 22 8.1
D1 20 7.4
S2 20 7.4
D2 19 7
D3 17 6.3
D7 8 29
D8 [§ 22
S1 5 1.8
D4 3 1.1
Gl 2 0.7
S3 2 0.7
S5 2 0.7
S6 2 0.7
R3 1 0.4
G3 1 0.4
D9 0 0
R1 0 0
R2 0 0
RS 0 0
G4 0 0
S4 0 0

B. Industrial Data

The industrial case studies have been provided by our
industrial partner Credit Suisse, a world-leading financial
services company headquartered in Switzerland.

Credit Suisse started to implement an SOA in 2000,
as a means to leverage its encompassing set of “legacy”
mainframe IT applications. In the process, Credit Suisse
has established one of the largest CORBA-based service
backbones in industry, which has recently been extended to
support Web services standards [14]. Credit Suisse operates
the Interface Management System (IFMS) as a central infor-

D3 | wg

D7 | Lo

D6 | e 49

Ds | e

D4 1 “).%‘8

D3 ¢ . oo

D2 | ,/,,,/,/,,,,/1,1',1/,/,,/,/] 233 - sudy
=

D1 | 16.6 study in [9]

usage frequency of patterns

Figure 2. Comparison of the usage frequency of patterns of the “D” group
in research case studies, as reported by our study and by reference [9]

Table IIT
PATTERNS USAGE IN INDUSTRIAL SPECIFICATIONS

pattern distribution %

S3 201 35.8
S4 168 29.9
S7 97 17.3
S1 91 16.2

occurrence

=
[*]
[eoNeoNoNoNeNeNoNoleolNoNeNo oo NoNo ool
[\)

mation base for all service interfaces available for reuse [15].
IFMS is an integral part of an application developer’s work
process: not only it does provide documentation on inter-
faces, but it also generates the required code artifacts (service
stubs) to use a service. For new service interfaces, IFMS
provides a workflow covering all tasks related to definition,
specification, and quality management, thus linking involved
staff during the phases of service development, testing and
deployment.

The service specifications analyzed in this paper were
extracted from IFMS by selecting a random subset of 100
service interfaces. They cover the whole range of application
domains at Credit Suisse, such as accounts, payments, cus-
tomers, financial securities operations, and stock exchange.
When an interface contained multiple versions of a service,
we extracted specifications from the most recent version.
The selected interfaces have been defined between 2000 and
2011.

The general structure of an interface document includes,
among others, sections about pre- and post-conditions of
the service, as well as on non-functional assertions under
different usage conditions; we extracted requirement speci-
fications from all these sections, when available.

In total, we extracted 625 requirements specifications
from the set of 100 case studies. We matched 562 of them
against the patterns presented in Section II; the pattern usage
distribution is shown in Table III.

IV. DISCUSSION

To compare them, the pattern usage distributions of Ta-
bles II and III have been combined and plotted on the chart
displayed in Figure 3. It is possible to immediately see the
discrepancy of pattern usage between research and industrial
case studies, with a separation line virtually drawn before
the patterns of the “S” group.

It is clear that the majority of requirements specifications
used in industrial settings matches the S1, S3, S4 and S7
patterns; below, we discuss the usage of each of these
patterns in the two categories.

As for pattern S1 (“average response time”), we have
already stated that it can be considered a variant of pattern
R4 (“response time”); moreover, R4 is the second most used
pattern in the specifications from the research literature.
In light of this, we can compare the usage of pattern
S1 (16.2%) in industrial specifications with the combined
usage of patterns S1 and R4 (20.9%) in the ones from
research literature; furthermore, we should also consider that
pattern R4 is not used at all in industrial specifications. It
is evident that the concept of response time has the same
importance, in terms of relevance for the specifications,
in both categories of specifications. However, while this
concept is used exclusively in its aggregated form (through
the average operator) in the industrial specifications, this
is not true for research case studies, where the aggregate
variant has been used only in five properties (found across
five papers).

Similar observations can be made by comparing the usage
of patterns S3 and S4 (respectively, “average” and “maxi-
mum number of events”), since they represent aggregated
variants of pattern S2 (“counting the number of events”).
As for the other pattern considered above, it is evident
that industrial specifications use only aggregated variants
(through the average and maximum operators) of the concept
represented by pattern S2. Moreover, aggregated variants of
pattern S2 are used very rarely in research case studies; in
this case, only pattern S3 is used, and only in two properties
(across two papers, from the same authors). Another point to
consider is that while counting patterns such as S3 and S4
represent the majority (65.7%) of industrial specifications,
the combined usage of patterns S2 and S3 in research
specifications is only 8.1%.

As for pattern S7 (“data-awareness”), the figure (17.3%)
of its usage in both set of case studies is the same. Indeed, we
have noticed in both sets of specifications that this pattern is
often used to state pre-/post-conditions on data exchanged
by a service. We also note that some recent research (for
example, see [13]) has investigated support for data-aware
properties in specification languages such as temporal logics,
representing a good example of an industrial need met by
academic research.

Finally, the remaining patterns matched by industrial spec-
ifications have been D1 (“absence”), matched only once, and
D6 (“response”), matched eleven times. These two patterns
actually represent the only patterns matched from the “D”,
“R” and “G” groups within the set of industrial case studies.

All the observations made above imply two main points:

« The majority of requirements specifications stated in
industrial settings refers to non-functional properties
expressed using aggregate operators (e.g., average,
count, maximum). Similar requirements are found only
rarely in the research literature and when so, they
are expressed using the non-aggregated versions of the
patterns.

o The specification patterns proposed in the research
literature are barely used in industrial settings. This may
be an indication of the lack of need for expressing such
properties within industrial specifications.

Addressing these points requires additional actions.

As for the first point, we believe this study shows some
needs of the software industry that should be addressed
by the research community. In particular, we see the need
for requirements specification languages and verification
techniques and tools that support non-functional properties
expressed using aggregate operators, since they seem to
play an important role in the quality assurance process of
industrial systems. We should point out some recent work
in this direction, such as support for aggregates in first-
order logic [16] and in a modal logic [17], as well as
support for quantitative properties in model checking of
temporal logics [18] and run-time monitoring of service-
level agreements [11] based on timed automata.

For the second point, we plan to conduct a future study
involving a group of requirements engineers and developers
to answer questions like:

« Do you know about the existence of property specifi-

cation patterns?

o Which property specification patterns are you familiar
with?

o Assuming you know specification patterns, would you
use them to write requirements specifications? Why?

« Would specification patterns help you to better under-
stand specifications and avoid ambiguity?

Threats to Validity

The validity of the results presented in this study may be
affected by several threats. First, the case studies we have
considered from the published research literature may not
be adequate representatives of research being developed in
the domain of SBAs. Other studies could consider different
scientific venues and maybe even extract specifications from
case studies presented in different research sub-areas, such
as service discovery and dynamic service composition.

Similarly, another threat is represented by the fact that we
have analyzed the specifications of case studies provided by

B B Research literature

35 D 0 Industry

30

25

20

percentage of patterns instances

w

(=]

m [ll |IILLILL1 e

D2 D3 D4 DS D6 D7 DS D9 Rl

Figure 3.

a single industrial organization. Other industries adopting
SOAs could define different requirements for their services.
Thus, the results obtained so far could be broadened with a
survey involving multiple industrial partners.

Finally, the matching of specifications with patterns has
been performed manually by a single person with six
years of experience in the areas of formal specification and
verification, as well as service-oriented computing. Other
people could classify the specifications differently, especially
when the matching with known patterns is not trivial.
Furthermore, given that a certain percentage (10% in the case
of research literature data, 20% for the industrial ones) of
the requirements specifications were expressed using natural
language, a certain degree of intrinsic ambiguity is involved
in the interpretation of the properties for the purpose of their
classification.

R2 R3 R4 RS Gl G3 G4 Sl

SZ S3 S4 S5 Sé6 S7

Comparison of patterns usage (percentage) between the research and the industrial case studies

V. RELATED WORK

Although in this paper we have considered only three
systems of specification patterns, other similar systems have
been presented in the literature. Below, we briefly summarize
the pattern systems we did not consider for this study and
explain why we opted for the ones presented in Section II.
In the area of qualitative temporal specifications, a cata-
logue of safety patterns is presented in [19]; however, with
respect to the “D” patterns group, it is restricted only to
safety patterns occurring in the specification of industrial
automation systems. Other extensions of the “D” patterns
are proposed in [20], which deals with the support of events
in LTL formulae, and in [21], where the PROPEL approach
— based on a “disciplined” natural language and finite state
automata — is used to express fine-tuned versions of the
“D” patterns. Since in our case studies we wanted to assess

the usage of the “D” patterns at a high level, we did not
go for such more specialized versions of these patterns. As
for the area of real-time specifications, a system of patterns
using structured English sentences is described in [22];
however, this work is tailored for clocked computational
tree logic, while we wanted to use specification language-
agnostic pattern systems, such as the “R” and “G” pattern
groups.

Another class of specification patterns we did not include in
this study is represented by patterns for probabilistic quality
properties [23]. For the sake of completeness, we should
say that three requirements specifications from the set of
research case studies were actual matches for two of the
patterns introduced in [23], while none of the specifications
of the set of industrial case studies was suitable to be
expressed using a probabilistic property pattern.

This paper is also one of the few that reports quantitative
data on the usage of certain specification pattern systems in
practical examples. Similar data can also be found in [9], as
shown in Section III-A; in [8], though the usage distribution
of each pattern is not actually disclosed; in [23], for prob-
abilistic property patterns; in [24], which presents a study,
conceptually similar to ours, on the analysis of the usage of
the “R” patterns in the automotive domain.

The “D” group is also at the basis of some work that
focuses on the specification and verification of service
interactions in SBAs. For example, in [25], property patterns
are defined in an ontology, whose concepts can then be used
by developers to describe the interaction behavior of services
as constraints. These constraints specify the occurrence and
sequencing rules of service invocations and are checked at
run time by a dedicated monitoring infrastructure. A similar
approach is also followed in [26], where service conver-
sations are specified using a subset of UML 2.0 Sequence
Diagrams, which are shown to be able to express all the “D”
patterns. Reference [27] presents PROPOLS, a specification
language based on the “D” patterns, which adds support
for the logic composition of patterns; this language can
be used to describe some properties against which service
composition workflows can be checked for compliance with
a static verification tool. Another specification language, PL,
also based on the “D” pattern group, is presented in [28]; the
language is used to express behavioral properties of business
processes, which can then be automatically translated into a
process algebra for refinement checking.

Other work has defined specification languages for service
interactions based on real-time patterns, as for the case
of the XTUS-Automata language proposed in [12], which
also presents the companion run-time monitoring infrastruc-
ture. This work presents two additional patterns, “temporal
properties over cardinalities” and “absolute time properties”,
which match, respectively, patterns S2 and S5 in Section II.

VI. CONCLUSIONS AND NEXT STEPS

In this paper we have presented the results of our com-
parative study on the use of specification patterns in service-
based applications. We compared the usage of patterns for
the requirements specifications of research and industrial
case studies, gathered over a time period of more than 10
years. The results show that the industrial case studies tend
not to use the specification patterns proposed in the research
literature, in favor of other patterns that characterize specific
aspects of service provisioning and that, conversely, are not
common in research case studies.

As part of future work, we plan to conduct a study with
a group of requirements engineers and developers of our
industrial partner, to assess a) to which extent specification
patterns are known in industrial settings; b) if and how
much the use of specification patterns helps to better express
and understand requirements. For the latter point, we also
intend to work with engineers and developers to analyze the
requirements specifications we could not match against a
pattern (as described in Section III-B), and try to reformulate
the requirements using some known pattern(s). Furthermore,
we will look at other non-functional requirements, such
as the ones related to security and privacy, and see either
if they match the security patterns already presented in
literature [29] or if new patterns are needed for this specific
domain. Last, we will use the outcome of this study to
guide the future development of ALBERT, the specification
language for service interactions we presented in [30], so
that we will be able to apply it and its companion verification
methodology in the context of industrial case studies.

ACKNOWLEDGMENT

This work has been partially supported by the European
Community under the grant agreement no. EU-FP7-215483-
S-Cube and the IDEAS-ERC grant agreement no. 227977-
SMScom; by the Swiss NSF under the grant agreement
no. 135051-CLAVOS.

REFERENCES

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
1. Fiksdahl-King, and S. Angel, A pattern language. Towns,
buildings, construction. Oxford University Press, 1977.

[2] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property
specification patterns for finite-state verification,” in FMSP
’98: Proceedings of the 2nd workshop on Formal methods in
software practice. ACM, 1998, pp. 7-15.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng, “Bandera: extracting finite-
state models from Java source code,” in ICSE 2000: Pro-
ceedings of the 22nd International Conference on Software
Engineering. ACM, 2000, pp. 439-448.

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

L. Baresi, E. Di Nitto, and C. Ghezzi, “Toward open-world
software: Issue and challenges,” I[EEE Computer, vol. 39,
no. 10, pp. 3643, 2006.

L. Baresi and E. Di Nitto, Eds., Test and Analysis of Web
Services. Springer, 2007.

N. Josuttis, SOA in Practice: The Art of Distributed System
Design. O’Reilly Media, Inc., 2007.

S. Konrad and B. H. C. Cheng, “Real-time specification
patterns,” in ICSE '05: Proceedings of the 27th International
Conference on Software Engineering. ACM, 2005, pp. 372—
381.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in ICSE
'99: Proceedings of the 1999 International Conference on
Software Engineering. 1EEE Computer Society Press, 1999,
pp- 411-420.

V. Gruhn and R. Laue, “Patterns for timed property specifi-
cations,” Electron. Notes Theor. Comput. Sci., vol. 153, no. 2,
pp. 117-133, 2006.

F. Raimondi, J. Skene, and W. Emmerich, “Efficient online
monitoring of web-service SLAs,” in SIGSOFT FSE 2008:
Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 2008,
pp. 170-180.

S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini, and M. Jmaiel,
“Specifying and monitoring temporal properties in web ser-
vices compositions,” in ECOWS 2009: Proceedings of the 7th
European Conference on Web Services. 1EEE Computer
Society, 2009, pp. 148-157.

S. Halle, R. Villemaire, and O. Cherkaoui, “Specifying and
validating data-aware temporal web service properties,” IEEE
Trans. Softw. Eng., vol. 35, no. 5, pp. 669-683, 2009.

D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:
Service-Oriented Architecture Best Practices. Prentice Hall,
2004.

S. Murer and B. Bonati, Managed Evolution: A Strategy for
Very Large Information Systems. Springer, 2010.

N. Pelov, M. Denecker, and M. Bruynooghe, “Well-founded
and stable semantics of logic programs with aggregates,”
Theory and Practice of Logic Programming, vol. 7, no. 3,
pp. 301-353, May 2007.

C. Areces, G. Hoffmann, and A. Denis, “Modal logics
with counting,” in WoLLIC 2010: Proceedings of the 17th
Workshop on Logic, Language, Information and Computation,
2010.

U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupfer-
man, “Temporal specifications with accumulative values,” in
LICS’11: Proceedings of the 26th Symposium on Logic in
Computer Science, 2011.

[19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

F. Bitsch, “Safety patterns — the key to formal specification
of safety requirements,” in SAFECOMP 2001: Proceedings
of the 20th International Conference on Computer Safety,
Reliability and Security, ser. LNCS, vol. 2187. Springer,
2001, pp. 176-189.

M. Chechik and D. O. Paun, “Events in property patterns,”
in SPIN 1999: Proceedings of the 5th and 6th International
SPIN Workshops on Theoretical and Practical Aspects of
SPIN Model Checking. Springer, 1999, pp. 154-167.

R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil,
“Propel: an approach supporting property elucidation,” in
ICSE 2002: Proceedings of the 22rd International Conference
on Software Engineering. ACM, 2002, pp. 11-21.

S. Flake, W. Miiller, and J. Ruf, “Structured english for model
checking specification,” in Trans. Amer. Math. Soc. ~VDE
Verlag, 2000, pp. 2547-2552.

L. Grunske, “Specification patterns for probabilistic quality
properties,” in ICSE 2008: Proceedings of the 30th Interna-
tional Conference on Software Engineering. ACM, 2008,
pp. 31-40.

A. Post, I. Menzel, and A. Podelski, “Applying restricted
English grammar on automotive requirements — does it
work? a case study,” in REFQS 2011: Proceedings of the
17th International Working Conference on Requirements En-
gineering: Foundation for Software Quality, ser. LNCS, vol.
6606. Springer, 2011, pp. 166-180.

Z. Li, J. Han, and Y. Jin, “Pattern-based specification and
validation of web services interaction properties,” in ICSOC
2005: Proceedings of the 3rd International Conference on
Service-oriented computing, ser. LNCS, vol. 3826. Springer,
2005, pp. 73-86.

J. Simmonds, M. Chechik, S. Nejati, E. Litani, and
B. O’Farrell, “Property patterns for runtime monitoring of
web service conversations,” in RV 2008: Sth International
Workshop on Runtime Verification, ser. LNCS, vol. 5289.
Springer, 2008, pp. 137-157.

J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, “Pattern
based property specification and verification for service com-
position,” in WISE 2006: Proceedings of the 7th International
Conference on Web Information Systems Engineering, ser.
LNCS, vol. 4255. Springer, 2006, pp. 156—168.

P. Wong and J. Gibbons, “Property specifications for work-
flow modelling,” in IFM 2009: Proceedings of the 7th In-
ternational Conference on Integrated Formal Methods, ser.
LNCS, vol. 5423. Springer, 2009, pp. 56-71.

G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, “To-
wards security monitoring patterns,” in SAC '07: Proceedings
of the 2007 ACM Symposium on Applied Computing. ACM,
2007, pp. 1518-1525.

L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini,
“Validation of web service compositions,” IET Softw., vol. 1,
no. 6, pp. 219-232, 2007.

