Combining Quality Assurance and Model
Transformations in Business-Driven Development

Jana Koehler, Thomas Gschwind, Jochen Kuster,
Cesare Pautasso, Ksenia Ryndina, Jussi Vanhatalo, HagjeerV"

IBM Zurich Research Laboratory
8803 Ruschlikon, Switzerland

Abstract. Business-driven development is a methodology for devetppl so-
lutions that directly satisfy business requirements. Atcibre are business pro-
cesses, which are usually modeled by combining graphichteual notations.
During business-driven development, business processimare taken to the IT
level, where they are implemented in a Service-Orientechidecture. A major
challenge in business-driven development is the semaapcbgtween models
captured at the business and the IT level. Model transféomatplay a major
role in bridging this gap.

This paper presents a transformation framework for IBM WéieBe Business
Modeler that enables programmers to quickly develop icglaodel transfor-
mations, which are then made available to users of this Tdmy address various
user needs such as quickly correcting modeling errors,imgfe process model,
or applying a number of refactoring operations. Transfdiona are combined
with quality assurance techniques, which help users tcepresor improve the
correctness of their business process models when appigngformations.

1 Introduction

Traditionally, the models of a business process and itsdmphtation in an information
system are considered separate artefacts. A businessspnoxelel, in the best case,
serves as documentation for the implemented system. Howasdusiness process
models and their implementation evolve independently; theckly become inconsis-
tent with each other.

Today, an increasing pressure from regulations combindul epportunities pro-
vided by new technologies such as those related to Servies#®d Architecture [1]
require models to reflect the reality of the implemented roess processes. Further-
more, implementations should be derived more directly flusiness needs, which is
often referred to as business-driven development [2—4fhs€quently, modeling tools
increasingly address the transition from business to ITvacelversa. We observe two
major trends. On the one harglality assurancstrives to enable users to create busi-
ness process models of higher quality from which corre@cetable code can be ob-
tained in a lean development process. On the other handgl transformationaim
at automating the transition across the semantic gap batbesiness and IT. Both
trends reflect the need to make modeling a less heavy-westihitawith the vision of
moving towards moragile modeling tools where users can quickly respond to change

in processes and systems, where they obtain immediatedekdin the quality of the
models and receive help to build software from models intehaterations.

The need to constantly adapt and revise process modelsdeeohunforeseeable
changes leads to an increased interest in providing uséhngong-implemented model
transformations that enhance the usability of the modelinds and the productivity
of the user. For example, many of the business-level moglétinls available today
allow users to generate part of the implementation on this lodishe processes mod-
eled. This comprises the generation of Web service degumptusually represented in
the Web Service Description Language (WSDL) [5], and of theesponding service
orchestrations represented in the Business Process xedianguage (BPEL) [6].
Many process modeling tools give a lot of freedom to busirssdysts, which may
even include the possibility to define their own extensianthe modeling language.
The interpretation of such extensions often lies with ther asid is thus not accessible
to the modeling tool, making code generation difficult orrew@possible. Moreover,
technical details that are required at the IT level are Uguaissing in models drawn
by business analysts.

To address this business-IT gap, modeling tools begin tetcain business users by
imposing a service-oriented and more technical modeliylg sb that technical details
must be added to the models in a refinement step. FrequemthgMer, business analysts
have difficulties in providing this kind of information. T$hrequires a tool-supported
hand-shake between business and IT that is not yet very we#nstood. It seems that
this hand-shake comprises a continuum in which a businex®egs model is refined
from ananalysis modeto a design modeand then further int@xecutable codeTo
develop and provide the necessary refinement, refactaimdyabstraction operations
in a modeling tool, a model transformation framework is regkthat is seamlessly
integrated into the modeling tool’s architecture.

In this paper, we discuss such a model transformation frarethiat we developed
for IBM WebSphere Business Modeler [7], an Eclipse-basedrercial product for
business process modeling and analysis. In Section 2, ateithis framework to other
frameworks developed in the academic community and disocussequirements. In
Section 3, an example scenario is introduced and the clggifeencountered during the
transition from a business process analysis model via abssiprocess design model
to executable code are reviewed in more detail. Section fmgowhy linking model
transformations with quality assurance is essential feir success in a commercial en-
vironment and gives a short overview on our quality asswaechniques. In Section 5,
the transformation framework is described in more detail. Aerview of a selected
set of model transformations that we implemented is giveth strortly evaluated in
Section 6. Section 7 concludes the paper.

2 Approaches to Model Transformation

Model transformations are key to success of the Model Dri&echitecture (MDA)
initiative [8] by the Object Management Group. Consequemticonsiderable amount
of research is devoted to the area of model transformatiifferent types of model
transformations are distinguished in the literature [9-%hen the source and target

models belong to the same metamodel, one usually speaksiofjenous transforma-
tions otherwise okxogenous transformatioriBhe former is more relevant in our case,
because our transformations mostly address the trangitomthe analysis to the de-
sign model of a business process, which we currently congidee represented by the
same metamodel. Exogenous transformations are typicsdig when mapping models
across domains, e.g., when generating code from businessegsr models. Endoge-
nous transformations can be further classified dependingtwther the source and
target models are physically the same or belong to a sepawadel.Out-placetrans-
formations produce a new target model, whelieaglacetransformations modify the
source model. Avertical transformation transforms abstract models into more rdfine
models or vice versa, whereabarizontaltransformation remains at the same abstrac-
tion level. Typical examples of vertical transformatioms eefinement and abstraction,
whereas refactoring is a semantics-preserving horizorstatformation. Research has
also distinguishedestructiveand non-destructivéransformations [10]. A destructive
transformation can delete existing model elements, buhadestructive transformation
can only add elements.

For our work, it is important that all types of transformaitsocan be implemented
using the framework presented in Section 5. However, iegteansformations play a
major role, because they meet our requirements of volaéilid rapid execution when
transforming models that share the same metam&dgdid executioris important to
provide immediate feedback to users about the results efasfiormationVolatility of
transformation results enables users to quickly undo (¢etely or partially) a trans-
formation that was incorrectly applied. Once users aresfgadi with the result of a
transformation, they can persist the modified model. A fi@mnsation should beppli-
cable to an entire model or to a part thereaf indicated by the current user selection.
Another requirement for our framework is ixtensibility with new transformations
i.e., adding new transformations should be easy for deeetodhe framework should
also enabldull integration of the transformations with the modeling environment so
that choosing and running a transformation does not reqoaee than a few mouse
clicks and users perceive transformations as being paheohormal editing flow. Fi-
nally, to facilitate a possible shipping of the frameworlkifuture version of IBM Web-
Sphere Business Modeler, the product team emphasized fuetemce of architecting
alightweightframework that does not significantly extend the tool’s cbdse.

Several of the Eclipse-based transformation frameworksldped by the academic
community provide features that are relevant to our requérgs. These are in particu-
lar approaches that provide the compilation of transfoionatand combine declarative
with imperative approaches. For example, Biermann et &l ptesent a transforma-
tion framework for defining and executing in-place transfations defined visually
by graph transformation rules. Transformation execut@&ies on an interpretation by
the AGG graph transformation tool [13] or compilation of tiwes into Java. The ATL
approach [14] allows developers of transformations toatatilvely specify rules in tex-
tual form. In addition, it provides imperative construaisspecify the control flow of
rule executions. Rules are compiled into byte code for ekatwn a virtual machine.
Mens [15] describes a refactoring plug-in for the Fujabairemment which allows
users to interactively call refactorings such as pullingaupethod. MATE [16], which

is implemented using the Fujaba tool, links model transtdiroms with model analy-
sis to provide users with repair and beautifier operation8faTLAB, Simulink, and
Stateflow models. Furthermore, many frameworks provideidging support specific
to transformations.

Our transformation framework does not provide a generaitgn in the sense of
those sophisticated frameworks developed by the acadesniencinity, such as for
example ATL [14], VIATRA [17], GreAT [18], ATOM3 [19], BOTL R0], Fujaba [21],
and SiTRA [22]. Our solution only focuses on transformingibess process models
given in a specific metamodel used within a specific tool. Ashsimplementing or
using the QVT standard [23] was also not in our focus.

Our transformations are written by specialized developadscurrently cannot be
composed by business users into larger composite tranafams. A simple recording
feature that allows them to generate sequences of tranafiams that require no fur-
ther user input is nevertheless straightforward. Howegurewiding business users with
composition support for iteration and branching as is atddé in other transformation
frameworks seems to require the exposure of transformatles at the business level.
An interesting alternative would be the learning of transfations by observing a user
and generalizing her editing operations on a business gsanedel. A first discussion
of such an approach has been described by Varro [24].

The example transformations that we discuss in this papeomiy illustrate that
the entire spectrum of transformations is needed duringnbss-driven development,
but also illustrate the necessity tombine model transformations with quality assur-
ance Assuring the quality of the model resulting from the tramsfation is especially
important when transforming models describing complexalvédr, because errors such
as deadlocks can only occur in behavioral models, but notaticsmodels such as
class diagrams. This means that the pre- and postcondibbastransformation in-
volve a very elaborate model analysis, see Section 4. Fatinglthese conditions
declaratively in a transformation framework such as thosationed above has not
yet been achieved, although it would have significant achges, e.g., in document-
ing and analyzing transformation code, to study termimagind confluence [25, 26],
or test transformations [27]. To obtain clarity whether timenbination of transforma-
tions with quality assurance would be possible in trans&diiom frameworks, requires
further investigation.

3 A Refinement Scenario

An analysis model of a business process as captured by aekasamalyst is shown
in Fig. 1. The process model describes the (very simplifieaidfing of claims by an
insurance company. First, the claim needs to be recordéalyfxd by a subprocess dur-
ing which the coverage of the claim by the insurance polidhefcustomer is validated.
If the customer has no coverage, then she is simply notifighi®fact. Otherwise, the
company continues to investigate whether the claim can bepaed. If the claim is
accepted, a subprocess to offer a benefit is entered, wrads te the final settlement
of the claim. If the claim is rejected, three activities tghace in parallel: information
in the Customer Relationship Management system (CRM) isigoto inform the cus-

tomer about the rejection, the decision is documented, laaddse is sent to product

development.
@ _
) ‘ Update CRM (’)
—< Accepted? [Cja\—m‘REJEKIEd Sido
Claim i

gate ‘

Validate Send Case

Coverage —- Covered? [Investigation Required Sl Sooaries to Produc...
&

[] @ Offer @
Not covered Notify No ® Benefit {
Coverage e

Fig. 1. Analysis model of a simplified claim-handling process iruir@ce.

(O]

@

(

Figure 1 only shows the control flow and omits many detailshef process such
as the data that is involved or the organizations respanédyl various activities in
the process. We notice that two decisid®evered?and Accepted?ead to exclusive
choices in the process flow. If the claim is covered, but tefahe process forks into a
parallel process fragment containing three activitiess Tontrol flow leads in total to
five branches in the process model, which consist of a mixdisequential and parallel
execution threads. Each branch ends individually with glsistop node. As soon as
one of these stop nodes is reached, the entire process miihtgte immediately. This
can lead to problems for activities in the process that aezw@ed in parallel as they
may not have completely finished when a stop node terminhéeprocess. Although
this termination behavior was probably not intended by th&iress analysist drawing
the process model, it can often be observed in real-worldge® models where it is
caused by a modeling practice of not re-joining parallehblees [28].

In the implementing process, this modeling problem shoalddrrected. The BPEL
process must end with a single reply followed by a single stge to provide the result
of the process back to the invoking service. Figure 2 showsxample of BPEL code
generated by automatically exporting the process moeéelfy applying an exogenous
transformation from the business-process metamodel t8&tE. metamodel, which
we do not consider further in this paper.

| ClaimHandlingReceive
4 Record Claim
I

<
& validate Coverage
1

& EV2

& Notify No Coverage & Investigate Claim
| %
3 Y

& Claim Rejected & Decide on Claim
|

‘ L - T 1
‘ & Offer Benefit & Update CRM & Document Decision & Send Case to Product Development

!
&
<] ClaimHandlingReply

®

Fig. 2. BPEL code using “link style” generated from the analysis riod

A link-based flow is used and the five process branches direter theClaimHan-
dlingReplyat the end of the process. The join condition that combinesgtiive links
at the reply needs to be associated with the correct AND Hmgithe three right links
combined with the XOR logic for the two left links. Automadity deriving the correct
join condition requires to analyze the control flow of theqass model.

The BPEL code in Fig. 3 uses a block style with expliititchactvities for the two
exclusive decisions and feow activity encapsulating the three parallel process steps
in case the claim is rejected. This notational variant makeBPEL flow logic more
readable. In this variant, an analysis of the process madequired that determines
the scope for thewitchandflow activities of the process.

@) ClaimHandlingReceive
& Record Claim
@ Validate Coverage
* Covered?
Not Covered Otherwise
& Notify No Coverage & Investigate Claim
& Decide On Claim
@ Accepted?

Claim Accepted Otherwise

& Offer Benefit & Update CRM & Document Decision & Send Case To Product Development

®] ClaimHandlingReply
®

Fig. 3. BPEL code using “block style” generated from the analysisleho

Even in this very simplified example, both BPEL versionsadieshow a slightly
changed process model at the IT level, which corrects tmaitetion behavior of the
analysis model. Thus, the analysis model is no longer ctamisvith its implementa-
tion. Ideally, changes that have been applied during thimbss-to-IT transition should
be reflected at the analysis level. One possibility is to mgmate the analysis model as
an abstract view on the BPEL code. However, this leads to ifferent process mod-
els, the one drawn by the business analyst and the otherajeddérom the IT process,
which need to be synchronized again. For a general approactotiel synchroniza-
tion see for example [29]. Another possibility is to use thalgsis model as input to
a business-driven development process in which transfiwnssare applied until a de-
sign model is obtained from which BPEL code can be directliyegated [3]. In this
paper, we concentrate on this second scenario and inviestigav a tool can support a
user in this activity.

We assume that the user wants to apply transformations smntilgsis model of the
business process in order to obtain a process design theattsdthe desired BPEL block
structure. Ideally, the tool should inform the user thatrttedlel contains sequential and
parallel branches that end in individual stop nodes. Themguld either automatically
apply transformations to make the model structurally admo the future BPEL or
guide the user in applying the appropriate transformatibigure 4 illustrates a first
possible model transformation that joins the parallel bhes of the process model.

It takes the three stop nodes ending the branches in thdglgmadcess fragment and
replaces them by a join followed by a single stop node.

> invoke
_Join stop nodes
®| on selection

:

Fig. 4. Joining multiple stop nodes.

In a second transformation, the newly introduced stop nedegrged with the two
stop nodes ending the exclusive branches, see Fig. 5. A rigeirgeoduced, followed
by a single stop node. This yields the desired BPEL bloclcsire, from which also
the correct join condition for link-style BPEL code can &abie computed.

invoke
Merge stop nodes
on selection

Fig. 5. Merging the remaining stop nodes.

If the user had applied a join to a larger selection of stopespdn incorrect process
model would result that does not terminate correctly. ligeal tool should warn or
prevent the user from applying transformations that leaantincorrect model. In the
following section, we take a closer look at the structurallgsis methods that we use
to ensure that users obtain feedback about the correcthessdels resulting from a
transformation.

4 Ensuring the Quality of Business Process Models

Business process models were traditionally used mainlgdoumenting and commu-
nicating a business process. As they were used only by hyrahksof quality of a

model was tolerable to some extent. Today, with the praltfen of business process
management systems, many process models are executed hipesa&rrors in those
models can incur substantial costs. A faithful and erreefmodel is also important

when one tries to obtain realistic business measures fromceps model through sim-
ulation or analysis, which is also supported by many toalsiyo

Obtaining a faithful and error-free executable model cam loifficult and painful
task. Business process models can be quite complex, oftapresing a hundred or
more activities with complex interactions between varibusiness partners. Applying
transformations to such a complex model can easily givaeiselditional errors when
done manually. It is thus important that a transformati@mfework can evaluate the
quality, in particular, the correctness of a model beforeaadformation is applied.
Furthermore, there should be something like a look-ahéagplying a transformation
to a correct model yields an incorrect model, the user muatdrted of this issue.

Possible errors in business process models include cdidmland data-flow er-
rors. An example of a control-flow error isdeadlocki.e., a situation where some part
of the process is waiting indefinitely for another part of giecess. A data-flow error
occurs, e.g., when a piece of data is not available when debtiny of these errors can
be avoided by applying a rigorous modeling discipline, bg.using correct modeling
patterns and by avoiding modeling anti-patterns [28].

Control-flow and data-flow errors can also be detected autioatly by dedicated
analysis algorithms. Detection of deadlocks or a widersctd®rrors can be done using
techniques from the area of model checking which can be egpdi business process
models [30, 31]. In the worst case, these techniques hauéltbthe entire state space
of the process model, the size of which can be exponentidiarsize of the process
model, a problem that is widely known atate-space explosiofio mitigate the state-
space explosion problem, we use a technique that is knowm ¢ampiler theory: We
decompose the process model into a hierarchgirgfle-entry-single-exit (SESE) frag-
mentq32].

Figure 6 shows a process model and its SESE fragments, wiacimdicated by
dashed boxes. Suppose that this model was derived from ttelind-ig. 1 by applying
a stop node transformation to the four topmost stop nodeishwhere combined by a
join, then followed by a second transformation that addeaegm The first of the two
transformations introduced a deadlock. For example, ifctham is accepted, the join
in fragmentF' waits in vain for the other three activities in fragménto finish.

Fig. 6. An erroneous process model and its decomposition into SEgffents.

To check for control-flow errors in the overall process moidés sufficient to check
each fragmentinisolation, i.e., each error is local to s&EBS8E fragment. For example,
the deadlock in Fig. 6 is local to fragmehit

A SESE fragment is usually much smaller than the overallgssclts size is mea-
sured as the number of edges between its direct subfragnfentie decomposition
into SESE fragments can be computed in linear time and theratamost twice as
many fragments as there are atomic activities in the prooestel, the time used for
the control-flow analysis of all the fragments mainly depead the size of the largest
fragmentin the process. In a case study with more than 34Quadd business process
models which had an average size of 75 edges with the maxineimg B42 edges, we
measured that the largest fragment of a process on averdgizk®5 with a maximum
of 82 [32].

As a second technique to mitigate the state-space explpsiaem, we use heuris-
tics that can be applied in linear time to sort out many of thierefree and a fair per-
centage of the erroneous fragments before any state-spaeeagion is applied [32].
This is based on the observation that many error-free an@ ssroneous fragments in
practice have a simple structure that can easily be recednkzor example, the dead-
lock in fragmentZ’ in Fig. 6 can be detected by recognizing that the fragmeitdss
a decision, but no merge [28, 32].

Modeling errors are reported to the user, who can then ta{esgb correct the
model by manually editing the model or applying automatamsformations. When
interleaving the analysis with model transformations, uker can be warned that the
selected transformation is not applicable to the set ofcsatiestop nodes without in-
troducing a deadlock into the model. The decomposition8ESE fragments can also
be used to speed up an automatic computation of a correehsid@merging based on
model-checking techniques.

5 In-Place Transformation Framework Architecture

IBM WebSphere Business Modeler is built on top of the Eclipkgform, making it
relatively straightforward to plug in custom extensionsyiding advanced functional-
ity. Whereas a detailed discussion concerning the tootisreston points would exceed
the scope of this paper, suffice it to say that the tool has Hesigned using the model-
view-controller pattern and that it is possible to manipeithe model elements using
the command pattern [33]. Unfortunately, the command patees not support easy
programmatic access of a model. For every change, a comnigact bas to be set up
with the correct parameters, options and references to tiehelements to be modi-
fied. With this approach, most of the transformation codeld/be dedicated to setting
up commands and pushing them onto the command executidg st the logic of
the transformation would become very hard to follow.

Thus, an abstraction layer is needed to enable programraetiess to the in-
memory model so that it can be modified with minimal amount ading, but still
without breaking the model-view-controller design of tbelt In this way, the results
of a transformation become immediately visible to the ustereas for the developer
the elements of a model are exposed in such a way that it besceasy to implement
transformations using an ordinary programming language,dava in our case. In this

approach, transformations are natively executed becaugaterpretation is required
and the Eclipse infrastructure is reused to package andrstnigformation plug-ins as
extensions to the product.

The main purpose of our transformation framework is to pte\guch an abstrac-
tion layer. It supports the execution of automatic refdaoprrefinement and abstraction
transformations, and enables their full integration with existing modeling environ-
ment and the quality-assurance functionality. As shownign ¥, the transformation
framework extends the IBM WebSphere Business Modeler enmient, acting as a
container of plug-ins that package the actual transfoonatode so that the modeling
tool can be customized by activating and deactivating ttprapiate transformation
plug-ins.

In-place
Transformation
Plug-ins

Cycle Removal

)
@
]
S
2
o
2
2]
@
©
o
o
=)
>
<

Reorder Branches
Replace SubProcess
Toggle Fork/Decision

1
Transformation Programming Interface SESE Fragments
Decomposition
Model E’;/;?r[\j:#t Model
Access Creation Element Mode! Control Flow
and S Pro_p_erly Analysis Analysis
Traversal Removal Editing Heuristics
Quality
In-place Transformation Framework Assurance
Editor Model Transformation 0
Selection Editing Palette Problem/Warning
Access Commands Registry Marker Access

IBM WebSphere Business Modeler

Fig. 7. Architecture of the transformation framework.

The challenge of this approach lies in the design of the $fiemmation program-
ming interface” (TPI) visible to the developer. It is esglyiimportant to add methods
to the TPI that make the model efficiently accessible so thedn be traversed, ana-
lyzed, and modified by the transformation code.

Table 1 summarizes the main features of the TPI that helpérrdpid develop-
ment of new transformations. Transformations may use ttegface to edit models by
creating new elementndremoving existing one&lementproperties can be directly
modified e.g., to rename an element or to reposition an element iditgram. Fur-
thermore, the programming interface has been designedpjmosidifferent patterns
of model traversalSimple transformationare independently applied once to each tar-
get model element and thus do not require the transformatide to deal with model
traversal issueomplex transformationmay require to filter the elements of a model
based on some criteria. In the simplest case, the filter chthekmeta-model element
type, for example to distinguish stop nodes from start nokesvever, also non-trivial

conditions may be required, such as checking whether elesnaea connected or be-
long to a SESE fragment. In general, transformations treayersemodel elements in

some specific order, for example, by drilling down the elenwamtainment structure
or by navigating through the predecessor/successors etserag linked by the control
flow. To support complex transformations that do not scametds in a predefined or-
der, the framework offers a direct look-up of elements. fn&ansformations can be
registered with a palette or menu of macro-editing buttaepldyed to the user, see
also Section 6.

Table 1. Excerpt of the Transformation Programming Interface.

TPI Feature Example

Creation of new model elements addst opNode()

addSt art Node()

addTask()

addGat eway(Type)

addCont r ol Edge()

addDat aEdge(Type)
Removal of existing model elementsnove(El enent)
Editing of model element propertie®ve(Posi ti on)

renanme(String)
Random access to model elements nd(El ement | D)
Access to selected model elementsel ecti on. get Edges()

sel ecti on. get Nodes()

sel ecti on. get St opNodes()
Traversal of related model elemenggt | nBranch()

get Qut Branch()

get Predecessor ()

get Successor ()
get Par ent ()
get Chi l dren()
Analysis of model elements i sDi sconnect ed()
m i sSESE(Fragnent)
Transformation palette registration egi st er (Tr ansf or mat i on)
unr egi ster (Transf or nati on)

To illustrate how the TPI can be used, we show below how to émmgint the “stop
node aggregation” transformation mentioned in Section 1.

transformation aggregat eSel ect edSt opNodes(gat ewayType) (
predecessors = [gi .
nodes = TPl . sel ection. get St opNodes();
if (nodes.length > 1) ?
foreach (node in nodes)r ?
redecessors. append(TPl . get Predecessor (node)) ;
PI. rem)ve(nodesJ;

ateway = TPl . addGat ewa at ewayType, predecessors.|ength);
gtopNoge = TPl . addSt oFNE\;Eig&; yiyp P oth)
TPI . addCont r ol Edge(TPl . get CQut Branch(gat eway, 0), st opNode);

i =0;

foreach (pred i ngar edecessors) (.
TPl . addCont r ol Edge(pred, TPl.getlnBranch(gateway,i));
i ++;

)))

This transformation is applied to a set of selected stop si@hel replaces them
with a join or merge depending on the user’s input, recalsFigand 5. As shown in
the pseudo-code, the transformation first ensures that tihaneone stop node has been
selected. As additional precondition, the transformationld check whether aggregat-
ing the selected nodes would not introduce an error, seeiticagsion in Section 4.
Then, the transformation iterates over all selected stafesostores their predecessor
element for later use, and subsequently deletes the stap Mbdn it adds either a join
or a merge to the model and links its outgoing branch with a st node. As a last
step, it connects each predecessor element to a differ@rhing branch of the newly
added join or merge.

6 Palette-Based Invocation of Transformations

Transformations can be made available to users through a wwrepalette. One can
imagine that palettes are provided to users with transfooms.supporting certain de-
velopment methodologies or industry-specific requiremdrigure 8 shows a possible
design of such a palette-based user interface. Users cakeitkansformations via a
menu or by clicking on the palette button showing a mnemondtupe of the trans-
formation. If no model elements are selected prior to intiooa a transformation is
applied to the entire model. An “undo” capability can eai®y provided to the user,
because transformations are executed as sequences ofcedibmands. The history of
transformed models could be maintained by using versioragement enhanced with
traceability at the model-element level.

af |&] &

Fig. 8. A palette of model transformations.

The palette above shows some of the model transformatiemsvihimplemented.
Most of these transformations can exist in a simple form aithinking to quality
assurance and in a more sophisticated form that links tatguesurance to support
the user in correctly applying a transformation. In the upjev of the palette, we
find (from left to right) the transformatiorsutomatically reorder brancheseplace
subprocessandcycle removalln the lower row, we find the transformatiojasn stop
nodesmerge stop nodetggle fork/decisionandassign data containetn addition to
these transformations, many others can be imagined.

Automatically reorder branchess a horizontal, non-destructive, semantics-
preserving transformation that simply cleans up cluttéhediagram, which can occur

when branches are connected to a join or merge. The transfiomanalyzes the graph-
ical layout and eliminates crossing branches.

Replace subprocess a horizontal, destructive transformation that replaceser-
selected subprocess by another user-selected subprtiqgassnpts the user to select
the replacing subprocess from a list of subprocesses thatrahnsformation obtains
from the workspace. In the current implementation, thisgfarmation connects the
new subprocess only with control-flow edges.

Cycle removals a vertical, destructive, semantics-preserving tramnséion that
takes a process model with unstructured cycles, i.e., backadges added to the flow,
and produces a model with well-structured loops [34]. Tladformation leads to a
model with a more technical flavor for many business usergrefbre, we consider
it as a vertical transformation. Cycle removal relies on$SE analysis described in
Section 4. It can happen that it returns an only partiallggfarmed model. In particular,
cycles that spawn parallel branches often cannot be removed

Join stop nodeandMerge stop nodeare horizontal and destructive transformations
already known to the reader. While Merge stop nodes is seécsanteserving, Join stop
nodes is not due to the semantics of these modeling elenfdrégwo transformations
are implemented, but do not link to the quality assurancety@nce, it is under the full
responsibility of the user whether to apply the transforomat

Toggle fork/decisiofis a horizontal, destructive transformation that simplgdia
selected fork into a decision and vice versa. This versiarseful during the editing
process, e.g., when correcting modeling errors. Howeneani easily introduce control-
flow errors, as discussed in Section 4. A more sophisticagesion would transform
process fragments of sequential branching behavior iafgnfients of parallel behavior
and vice versa, which requires a combination with qualiguaance.

A very interesting challenge is the treatment of data flowamsformations. It can
be studied in thé\ssign data containgransformation, which is a vertical, destructive
transformation that takes a model with control flow and refiheto a model with data
flow. It can also be applied to models with mixed control anthdw. The transfor-
mation leads to a changed interface of model elements.

Several possible solutions exist for how a transformatammodify the interfaces
of activities, e.g., it can add only the newly required irgdatitputs or it can in addition
remove those inputs/outputs that are no longer neededtiritxidata-flow edges can
be restored if the old and the new interface of a model elersieaute the inputs and
outputs that are required by the data flow. Otherwise, daasrhave to be inserted,
which will remain abstract in most cases, because the wamsttion cannot determine
what the exact mapping between mismatched data will be.eThsrface changes
usually affect the consistency of other process modelssthate the same model ele-
ments. The resolution of possible inconsistencies is dargihg problem, which may
not be amenable to a fully automatic solution and requirerattansformations to sup-
port the user. In addition, beautifier transformationsirgyon quality assurance may
be required to eliminate control and data flow edges that ademger needed in the
transformed models.

At the moment of writing, it is too early to give a comprehaesevaluation of the
framework itself. Concerning the performance of the trarmsations, following an in-

place approach has shown its benefits in terms of the speddddt tkansformations are
executed. Users running transformations hardly noticeliffierence between transfor-
mations and normal editing commands, because they seestlieatthe transformation
immediately without having the need to persist the tramsémt models.

In terms of usability, the transformations are easy to apply significantly reduce
the editing effort for the user. Based on the example sceirathis paper, Fig. 9 shows
that model transformations reduce lengthy and error-pnesrgual editing operations to
a few clicks. For example, manually performing the join aretge stop nodes transfor-
mations in the example scenario takes 42 mouse clicks. Aatiomthe transformation
still requires the user to select the set of nodes (twiceetblieks), but then the model is
updated with a single mouse click. The chart in Fig. 9 shovesrhwre transformations,
assign data containeandreplace subproces@ the context of the example scenario.

zn | |Manual Automatic
H Manual _
B Automatic Join 6s + 3 s+ 1
Mergeg 6s + 3 s+1
“ Assig Se 3

Replace 2[+ 5 3

Join Stop Nodes

Merge Stop Nodes

Assign Data 72

Container s ... No. of stop nodes

e ... No. of edges
Replace I ... No. of links connected
Subprocess [3 to the process

0 15 30 45 60 75
[mouse-clicks]

Fig. 9. Usability evaluation of selected in-place model transfations.

7 Conclusion

Model transformations help significantly in addressinglieimges in the business-IT
gap encountered during business-driven development,hwdiims at directly taking
business process models to the IT level. In this paper, wertem a transformation
framework that adds a lightweight infrastructure to IBM V¥glhere Business Modeler
for the rapid development of model transformations. Usimg framework, in-place
transformations are developed that are easily applicablbiness users to automate
complicated editing steps. By linking them to quality-assice capabilities provided
in modeling tools, the transformations can be made “irgefit” and help users to pre-
serve or re-establish the correctness of their models wbhamgghrough a sequence
of refinement and refactoring operations. The set of transdtions implemented sig-
nificantly increases user productivity as they raise therabson level of the model
editing palette from a “picture-drawing” tool to a level qugoting real business-process
modeling.

Acknowledgement The work published in this article was partially conductathia
the EU project Super (www.ip-super.org) under the EU 6thriewaork.

References

A

o0~

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Newcomer, E., Lomow, G.: Understanding SOA with Web Smrwi Addison Wesley (2005)
. Mitra, T.: Business-driven development. IBM developerkg article,

http://www.ibm.com/developerworks/webservices/lifgrars-bdd, IBM (2005)

. Koehler, J., Hauser, R., Kuster, J., Ryndina, K., Vaaloat]., Wahler, M.: The role of visual

modeling and model transformations in business-drivereldgment. In: Proceedings of
the 5th International Workshop on Graph Transformation \disdal Modeling Techniques,
Elsevier (2006) 1-12

. Brahe, S., Bordbar, B.: A Pattern-based Approach to BgsifProcess Modeling and Imple-

mentation in Web Services. In: In Proceedings of Workshopldliog the SOA - Business
perspective and model mapping, in conjunction with ICSQO06)

. Christensen, E., Curbera, F., Meredith, G., Weerawai@naNeb services description lan-

guage (WSDL). http://www.w3.org/TR/wsdl (2001)

. Jordan, D., et al.: Web services business process earclainguage (WSBPEL) 2.0.

htpp://www.0asis-open.org/committees/wsbpel/ (2007)

. IBM: WebSphere Business Modeler. http://www.ibm.caftisare/integration/wbimodeler
. Object Management Group: Model driven architecture 20@p://www.omg.org/mda.
. Mens, T., van Gorp, P., Karsai, G., Varro, D.: Applying adual transformation taxonomy

to graph transformation technology. In Karsai, G., Taant2e, eds.: GraMot 2005, Inter-
national Workshop on Graph and Model Transformations. M@ 52 of ENTCS., Elsevier
(2006) 143-159

Mens, T., Gorp, P.V.: A Taxonomy of Model Transformati@iectr. Notes Theor. Comput.
Sci.152(2006) 125-142

Czarnecki, K., Helsen, S.: Feature-based survey of htiadesformation approaches. 1BM
Systems Journal, special issue on Model-Driven SoftwareDpment45(3) (2006) 621—
645

Biermann, E., Ehrig, K., Kdhler, C., Kuhns, G., Taentge, Weiss, E.: Graphical Definition
of In-Place Transformations in the Eclipse Modeling Framew In Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G., eds.: Model Driven Enginegtiianguages and Systems, 9th
International Conference, MoDELS 2006. Volume 4199 of LNG®ringer (2006) 425-439
Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approachnfuage and Tool Environment.
In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., ddandbook of Graph Grammars
and Computing by Graph Transformation, volume 2: Applmadi, Languages and Tools,
World Scientific (1999) 551-603

Jouault, F., Kurtev, I.: Transforming Models with ATln Bruel, J.M., ed.: Satellite Events at
the MoDELS 2005 Conference, Revised Selected Papers. ¥o88#4 of LNCS., Springer
(2005) 128-138

Mens, T.: On the use of graph transformations for modektering. In: 2005 Summer
School on Generative and Transformational Techniques ftw8ce Engineering, Braga,
Portugal, Departamento Informatica, Universidade do MjnBraga, Portugal, Technical
Report TR-CCTC/DI-35 (2005) 67—98

Sturmer, I., Kreuz, 1., Schafer, W., Schiirr, A.: Enbed simulink/stateflow model transfor-
mation: The mate approach. In: Proceedings of MathWorkewwotive Conference (MAC
2007), MathWorks (2007)

Balogh, A., Németh, A., Schmidt, A., Rath, I., Vaga, Barro, D., Pataricza, A.: The VIA-
TRAZ2 model transformation framework (2005) Presented a¥IE& 2005 — Tools Track.
Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the Wé&raph Transformation in the
Formal Specification of Model Interpreters. Journal of émnsal Computer Scienc#11)
(2003) 1296-1321

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

de Lara, J., Vangheluwe, HAT oM?3: A Tool for Multi-Formalism and Meta-Modelling.
In Kutsche, R.D., Weber, H., eds.: Proceedings Fundamépialoaches to Software Engi-
neering (FASE 2002). Volume 2306 of LNCS., Springer-VeKlagril 2002) 174-188
Braun, P., Marschall, F.: BOTL - The Bidirectional Olj&kiented Transformation Lan-
guage. Technical report, Fakultat fur Informatik, Teisiche Universitat Miinchen, Technical
Report TUM-10307 (2003)

Nickel, U., Niere, J., Zindorf, A.: Tool demonstratidrhne FUJABA environment. In: Pro-
ceedings of th@2™? International Conference on Software Engineering (IC&Eerick,
Ireland, ACM Press (2000) 742-745

Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.GMcDonald-Maier, K.D.: SiTra:
Simple Transformations in Java. In Nierstrasz, O., WhittleHarel, D., Reggio, G., eds.:
Model Driven Engineering Languages and Systems, 9th latiemmal Conference, MODELS
2006. Volume 4199 of LNCS., Springer (2006) 351-364

Object Management Group (OMG): Meta Object Facility (®O 2.0
Query/View/Transformation Specification. Final AdoptecbeSification ptc/05-11-01.
(November 2005)

Varro, D.: Model Transformation by Example. In Nieasz, O., Whittle, J., Harel, D.,
Reggio, G., eds.: Model Driven Engineering Languages aste®ys, 9th International Con-
ference, MODELS 2006. Volume 4199 of LNCS., Springer (2008)—424

Kuster, J.M.: Definition and validation of model tramshations. Software and Systems
Modeling (SoSyM)5(3) (2006) 233-259

Varro, D., Varro-Gyapay, S., Ehrig, H., Prange, Ueritzer, G.: Termination Analysis of
Model Transformations by Petri Nets. In Corradini, A., Efi., Montanari, U., Ribeiro, L.,
Rozenberg, G., eds.: Graph Transformations, Third Intemnal Conference. Volume 4178
of LNCS., Springer (2006) 260-274

Kuster, J.M., Abd-El-Razik, M.: Validation of Model &nsformations - First Experiences
Using a White Box Approach. In: MoDELS Workshops. Volume 436 LNCS., Springer
(2006) 193-204

Koehler, J., Vanhatalo, J.: Process anti-patterns: tdavoid the common traps of business
process modeling, part 1 modeling control flow, part 2 modetiata flow. IBM WebSphere
Developer Technical JournaD.2, 10.42007)

Giese, H., Wagner, R.: Incremental Model Synchroriratiith Triple Graph Grammars.
In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., edéadel Driven Engineering Lan-
guages and Systems, 9th International Conference, MoDIBDS.2/0lume 4199 of LNCS.,
Springer (2006) 543-557

van der Aalst, W.M.P.: Workflow verification: Finding d¢oul-flow errors using Petri-net-
based techniques. In: Business Process Management, Mddelmiques, and Empirical
Studies, London, UK, Springer-Verlag (2000) 161183

Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.Ven Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP reference model. In: Procegdof the 4th International
Conference Business Process Management (BPM 2006). Vaetdf of LNCS., Springer
(2006) 451-457

Vanhatalo, J., Volzer, H., Leymann, F.: Faster and Mareused Control-Flow Analysis for
Business Process Models though SESE Decomposition. Imn&inational Conference on
Service-Oriented Computing (ICSOC), Vienna, Austria (8egber 2007) to appear.
Gamma, E., Helm, R., Johnson, R., Vlissides, J.. Desatefs: Elements of Reusable
Object-Oriented Software. Addison Wesley (1994)

Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Datile techniques for model-driven
business process integration. IBM Systems Joutddl) (2005) 47-65

