
Publishing Persistent Grid Computations as WS Resources

Thomas Heinis, Cesare Pautasso, Oliver Deak, Gustavo Alonso
Department of Computer Science, Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Zürich, Switzerland

{heinist,pautasso}@inf.ethz.ch, odeak@student.ethz.ch, alonso@inf.ethz.ch

Abstract Grid services can be composed into processes, pro-
viding a high level definition of the computations involved in terms
of their data exchanges and control flow dependencies. In this
paper we show how processes themselves can be efficiently pub-
lished as Grid services by mapping the persistent state of the pro-
cess executions to standard compliant interfaces as defined by the
Web Services Resource Framework (WS-RF). Mapping processes
to resources is a fundamental step to enable recursive Grid service
composition, where composite Grid services are themselves pub-
lished as services. This gives processes a standardized and well-
understood interface that enables their management, monitoring,
steering and adaptation. Additionally it eases their reusability and
simplifies integration into existing Grid applications and portals.
In order to determine the mapping’s overhead, we include the re-
sults of a comprehensive performance evaluation.

1. Introduction

The idea of process-based Web service composition and
more recently process-based Grid service composition has
gained widespread acceptance (e.g., [4, 17, 15]). Using pro-
cesses, already deployed Web (and Grid) services can be
reused to build complex service compositions at a high level
of abstraction. However, one important open issue that still
needs more attention concerns the reusability of such com-
positions.

Processes can be used to describe ad-hoc Grid computa-
tions involving a well-defined set of Grid services that are
integrated to perform a certain computation once. Processes
can then be generalized by making them parametric, in or-
der for the same Grid service composition to be reused with
different input data sets. Furthermore, the same process can
be bound to different Grid service providers, allowing for
the same algorithm structure (i.e., the process) to be reused
with different building blocks (i.e., the services). Another
interesting option – the focus of this paper – consists of
reusing a Grid service composition by publishing it as an-
other Grid service.

In this paper we propose to map a process composing

Part of this work is funded by the European IST-FP6-004559 project
SODIUM (Service Oriented Development In a Unified framework).

Grid services to a Grid service interface compliant with the
Web Services Resource Framework and Web Services No-
tification set of specifications (WS-RF and WS-N [6]). A
process published as a Grid service can be accessed as a re-
source through a Web service interface, the WS-Resource,
which provides standardized operations. The interface in-
cludes support for advanced functionality not found in state-
less Web services, such as lifecycle management, property
manipulation and event notification.

One important contribution of this paper lies in the defi-
nition of a precise mapping between these WS-RF concepts
and the persistent state of a service composition. Further-
more, our approach is general and can be used with process-
based compositions defined using different modeling lan-
guages. Exposing process-based composition of Grid ser-
vices as a standard-compliant Grid service has several ad-
vantages. For example, in addition to basic Grid services,
also composite Grid services can be invoked, managed, and
monitored from existing Grid-enabled client applications
and portals.

The mapping can be outlined as follows. Lifecycle man-
agement of the resource provides a simplified way to man-
age the persistent state of the corresponding process execu-
tion. When the lifetime of the associated resource expires,
the state can be garbage collected by the underlying process
management system. Resource property manipulations are
directly mapped to the state of the corresponding process
instance, so that clients can for instance access intermediate
results during the execution of the Grid service composi-
tion and, to some extent, steer and control the computation
by setting the values of the properties of the associated re-
source. Notifications can be used to inform clients about
state changes, giving a powerful and efficient mechanism to
report the progress of the execution of a composition. Fi-
nally, the WS-RF concept of service groups can be used to
manage batches of related process instances.

While such an interface for persistent computations
greatly simplifies its integration by providing enhanced
managing as well as monitoring capabilities, the perfor-
mance overhead introduced by such a mapping is critical if a
potential solution is supposed to scale for a large number of
clients and resources. Thus, we need efficient mechanisms

to create (i.e., start computations) and destroy resources, to
read and write the state of the resource as well as to manage
notifications and subscriptions, i.e., to match events with
subscriptions and to send notifications. We have imple-
mented such a WS-RF mapping layer on top of the JOpera
autonomic process execution engine [23] and present an ex-
tensive performance evaluation of the system scalability and
overhead.

The remainder of this paper is structured as follows:
in Section 2 we set the context for our work by giving
an overview over process-based Grid service composition.
Section 3 discusses the mapping between processes and
WS-Resources leading to a discussion of its applications in
Section 4. An outline of the implementation is given in Sec-
tion 5 followed by a performance evaluation of the current
prototype implementation (Section 6). We conclude the pa-
per by discussing related work in Section 7 and drawing
some conclusions in Section 8.

2. Modeling Persistent Grid Computations
with Processes

In this section we state our assumptions about how pro-
cesses are used to model computations composed of Grid
services. We also define the persistent state associated with
such computations as well as their lifecycle, so that it be-
comes clear what information should be provided by a pro-
cess management infrastructure in order for our approach to
be applicable.

The concept of process is shared among several Grid
service composition languages and tools like GSFL [15],
Pegasus [7], AGWL [8], Triana [25], ScyFlow [20], Grid-
Flow [3], JOpera [22], xWFE [28] and Karajan [27].

A process is a composition of tasks connected by data
flow and control flow. Processes also have input parameters,
holding the data passed to the process, and output parame-
ters storing the results of the computation. Tasks (equiva-
lent to jobs in ScyFlow and activities in BPEL, AGWL and
GSFL) refer to Grid services which also have input and out-
put parameters associated with them. The data passed to a
service is copied into the input parameters whereas the re-
sults coming from a service invocation are copied into the
output parameters of the task. The data flow defines how
the results of a Grid service invocation are copied into the
input parameters of the next tasks. The control flow de-
fines the order of invocation of the distinct Grid service in-
vocations. Neither Karajan or xWFE explicitly distinguish
between control flow and data flow, but instead derive the
control flow from the data flow dependencies. This, how-
ever, does not hinder the applicability of our approach. In
fact, when we define the mapping between a process and a
resource we are mostly interested in its runtime execution
state.

The runtime state of a process can be defined to be all
data associated with its execution. Since the same process

can be executed multiple times, such state is typically struc-
tured in several instances that can be active concurrently.
Each instance stores a set of state attributes comprising the
values of the input and output parameters (referred to as
input/output data set in GridFlow, variables in BPEL, data
packages in AGWL, parameters in xWFL and input/output
files in Karajan) of all its Grid service invocations includ-
ing the process itself, as well as process and task attributes
written by the execution engine. These attributes include
meta-data such as execution times of tasks and processes
determined by the execution engine, the current execution
status of tasks and processes (e.g., waiting, running, fin-
ished, failed, etc.) and other execution related information
which may differ depending on the engine.

The lifecycle of a process instance begins when a pro-
cess is instantiated. During the execution of the instance,
its state will be accumulated and stored persistently. This
implies that all intermediate results, i.e., results of task in-
vocations, remain available after the task has finished and
the following tasks have consumed them. The final results
will also be saved once the computation is finished. At the
end of the lifecycle of a process instance, its state will be re-
moved from the persistent storage. It is worth noting that the
end of the lifecycle of the instance and the end of the com-
putation do not necessarily coincide: after the instance has
finished executing, the state will still be available, allowing
the history of the computation to be read from persistent
storage.

3. Mapping Processes to WS-Resources

The specifications that constitute the Web Service Re-
source Framework have been defined in order to shift from
the stateless paradigm of plain Web services to the stateful
model of Grid services [5].

To do so, WS-RF [12] loosely couples a Web service
with a stateful resource and provides well-defined methods
to monitor and manage its state. In this context, a Web ser-
vice that provides a standardized set of operations to ac-
cess the state of the resource associated with it is called a
WS-Resource. The areas of standardized operations span
lifecycle management, property manipulation and service
groups as specified in WS-ResourceLifetime [14], WS-
ResourceProperties [14] and WS-ServiceGroup [19] re-
spectively. In order to also provide publish-subscribe in-
teraction patterns for Web services, the WS-N set of spec-
ifications (WS-BaseNotification [13] and WS-Topics [26])
has been brought forward.

Together, the WS-N and WS-RF set of specifications de-
fine the Grid service interface [5]. In the following we give
a brief outline of the specifications and also provide a de-
tailed mapping of the specified operations to the persistent
state of a Grid computation defined as a process.

3.1. WS-Resource

This specification defines the implied resource pat-
tern [6] as being the relationship between a Web service,
the WS-resource, and a resource. A WS-Resource is de-
fined to be a Web service through which clients can access
the state of a resource and manage its lifetime. The WS-
Resource uses implementation specific means to access the
underlying resource. The specification is not very restric-
tive with respect to what can be considered a resource. The
only requirements a resource has to satisfy is that it needs to
be uniquely identifiable and that it has properties. Process
instances meet these requirements as they are usually asso-
ciated with unique identifiers and contain state information
which can be interpreted as properties.

Thus, we propose to map a process instance storing the
state of the execution of a composite Grid service to a re-
source. As we are going to show, clients can manage a pro-
cess instance through the standard operations provided by a
WS-Resource interface. Because the set of state attributes
(i.e., the properties) is identical for all instances of a given
process, only one WS-Resource interface per process is re-
quired to operate on all instances of the particular process.
However, for each process that is published as a Grid ser-
vice, an additional WS-Resource interface is required.

Furthermore, since the mapping between resources and
process instances is a bijection and each process instance
already has its own unique identifier, we can reuse the same
identifier for the corresponding resource. Thus, the process
identifier becomes part of the resource endpoint reference
and will have to be included in all messages sent to the WS-
Resource in order to correlate the client request with the
individual process instance.

3.2. WS-ResourceLifetime

The WS-ResourceLifetime specification defines the
management of a resource by providing means to either de-
stroy a resource instance immediately via the Destroy oper-
ation or to schedule its destruction at a specific point in time
by using the SetTerminationTime operation. The sched-
uled destruction time is a property of the WS-Resource and
can therefore be queried, set and thereby extended accord-
ingly.

Both operations defined in this specification, immediate
and scheduled destruction, are mapped to the lifecycle of
the process instance and its state. In addition to discarding
the state of a process instance, destruction will also interrupt
and terminate the ongoing execution (if the process is still
running).

Since the specification does not include a standard mech-
anism for resource creation, we discuss several alternatives
for instantiating a new process upon resource creation. Re-
lated to this, we also describe two additional operations to
control the state of the process associated with a resource,
once it has been created.

The first way to create a resource, is through the start-
Process operation. This operation instantiates a process and
begins its execution after having allocated a new resource
for it. In some cases, e.g., for parameter sweep computa-
tions [1], the same process is started multiple times with
different input parameter values. Calling the startProcess
operation several times to do so may be expensive. Thus,
we also provide the startBatch operation which, instead of
starting only one process, starts a batch of identical pro-
cesses that may receive different input data.

Additionally, in order to enable more fine-grained life-
cycle management of the process execution we provide the
(non-standard) Suspend and Resume operations which al-
low the client to pause the execution of a process and to
subsequently resume it. The suspend operation amounts to
setting a breakpoint before the next task which is to be ex-
ecuted. Execution will be suspended once the breakpoint is
reached. These two operations can be used in conjunction
with the ability of modifying property values of the associ-
ated resource, so that the changes can be applied by assur-
ing the client that the state of the suspended process has not
changed and thus ensuring the consistency of the result.

Finally, the startSuspended operation is an atomic com-
bination of the startProcess and Suspend operation which
prepares a new process instance for execution but does not
start it. This operation can for instance be useful to start a
process, subscribe to its topics and only then resume execu-
tion, thereby making sure none of the notifications sent due
to the subscriptions is missed.

3.3. WS-ResourceProperties

This specification defines how the properties associated
with the state of a resource can be accessed using a pull
mechanism and how they can be modified. Published prop-
erties of a resource are defined in a document associated
with the resource. A client can retrieve the properties docu-
ment from a resource via the GetResourcePropertyDocu-
ment operation or can query the resource for specific prop-
erties by invoking the QueryResourceProperties operation
and can read or write the values of these properties using
the GetResourceProperty and SetResourceProperty op-
erations respectively.

In the case of resources representing processes, their
properties can be directly mapped to the process execution
state. Since the persistent state of a process can be mod-
eled as a set of attributes as described in Section 2, each of
these can be accessed by clients through the corresponding
property of the resource. Thus, each input and output pa-
rameter of the process (and its tasks) as well as execution
related meta-data (e.g., profiling, debugging, error handling
information that is accumulated during the execution of the
process) is mapped to a specific property. Given the data
flow structure of a process, it is possible to automatically
generate the corresponding resource’s property document
by enumerating its state attributes.

In particular, we distinguish between read-only and read-
write properties. There is no need to be able to write prop-
erties mapped to intermediate results of tasks as well as to
final results of the process (i.e., mapped to output parame-
ters). Also, writing properties that are mapped to instance
attributes set by the execution engine should not be allowed.
In fact, doing so would invalidate the state of the process.
Additionally, there are also constraints regarding the time
when such properties can be read. That is, they can only
be read after having been initialized by the execution en-
gine. Violating these rules leads to a fault message sent to
the client.

In contrast to the read-only properties there is also a set
of read-write properties. Input parameters to tasks and also
the process are defined to be read-write properties. How-
ever, also in this case there is no need to be able to write
to properties that map to input parameters that have already
been used for the computation since it will not have any in-
fluence on the process execution. Writing such a property
will therefore also lead to a fault message.

3.4. WS-ServiceGroup

With this specification, groups are used as a classifica-
tion mechanism to simplify the discovery and management
of sets of WS-Resources. WS-Resources are not allowed to
freely join groups, but must meet certain criteria defined for
each group. Groups can then in turn be queried to find all
members.

We map the concepts defined in the WS-ServiceGroup
specification to the execution of batches of related pro-
cesses. To do so, service groups are defined so that member-
ship is restricted to only allow resources representing pro-
cess instances belonging to the same execution batch to join
the group.

3.5. WS-BaseNotification / WS-Topics

The WS-BaseNotification and WS-Topics specifications
define the push mechanism used by clients to be informed
about changes occurring at the resource. With these, clients
are notified using an asynchronous event-notification inter-
action pattern. A client can subscribe to topics defined by
a WS-Resource using the Subscribe operation and will re-
ceive the corresponding notifications from it. The various
topics provided by a resource are defined as one of its re-
source properties and can thus be queried for.

Similar to the resource properties, we define the at-
tributes of the state of a process instance to be available as
topics. This means that whenever a state attribute changes,
subscribed clients will receive a notification. The notifica-
tion sent to the clients also includes the new value of the
attribute, in order to reduce the load on the WS-Resource
server.

As an extension, we also include the startSubscribed
operation, which atomically instantiates a resource and sub-

scribes to its changes (the topic is passed as a parameter).
This way, clients are guaranteed not to loose notification
messages.

4. Applications

In this section we discuss how the previously described
mapping improves the handling of persistent computations
in the areas of lifecycle management, monitoring, and steer-
ing of one or a batch of processes.

4.1. Lifecycle Management

Mapping WS-Lifetime to the lifecycle of processes and
their state provides a useful and elegant technique to deal
with the problem of managing the accumulated state of past
executions of a process. This allows clients to define dur-
ing what time frame they are interested in the computation’s
results to remain stored persistently. If the computation ter-
minates within this window, its results will be kept as part
of its persistent state as long as the resource instance is not
destroyed. Otherwise, the computation will be aborted upon
the expiration of the corresponding resource’s lifetime and
its state will be discarded at a well-defined and predictable
time. This is an improvement with respect to other systems
that resort to ad-hoc techniques to manage the results of past
computations (e.g., [16]).

4.2. Monitoring and Steering

Using property manipulation a client is able to read and
write properties that map to attributes of the underlying
state. More specifically, by reading properties a client can
poll for the current state. Thus, a resource can be queried
to find out what task has been reached by the process, to
retrieve intermediate results or to download the final results
once the process execution has completed. However, if a
client requires to be informed about a change of a state
attribute mapped to a property, with this property-based
mechanism it still needs to periodically poll the resource
to find out about the new value. An alternative method to
monitor the process and its execution is thus provided by the
topics to which the client can subscribe and about which it
will receive a notification once the value of the correspond-
ing property changes. This subscribe/notify form of interac-
tion enables a push model relieving the client from having
to poll for the changed value and the service provider from
the overhead introduced by polling clients. A client can
subscribe to execution state changes of individual tasks of
the process and is thereby able to track the progress of the
process execution.

Steering of processes can be achieved by proactively set-
ting properties to different values. With this, for instance,
a client becomes able to reset the value of an input param-
eter of a task depending on the result or the value of an

output parameter of a different task. Thus, it can steer the
execution by following different paths in the control flow
and adapting the data flow of the running process. Since
partial results are sent to the client through notifications, a
client can use this information to perform a form of error
recovery: if results indicate that an exception or failure has
occurred, the client can take corrective actions and reset in-
put parameters of tasks yet to be executed. To do so in a safe
way in order to avoid inconsistencies, the client should sus-
pend the execution of the process by interactively setting a
breakpoint on a specific task or by pausing the execution of
the entire process immediately. The client is informed with
a notification when the breakpoint is reached. After the val-
ues of the selected properties have been corrected, the client
can resume execution (Resume).

4.3. Managing process batches

We use the concept of service groups to manage process
batches. With this, a client can add all started processes
belonging to a batch to a service group. Clients can then
read the properties of the service group to find all process
instances of the batch. Using the concept of the service
group in this context therefore provides a convenient way
of grouping process instances so that they can be managed
and monitored as a whole. For example, processes can be
grouped by a caller-callee relationship, so that the state of a
set of nested processes is treated as a single resource. This
in turn can be used to keep track of the execution of the
entire set of processes and to garbage collect multiple (but
related) process instances when the corresponding resource
is destroyed.

5. Implementation

In order for our approach to be implemented, an execu-
tion engine needs to store the state of the processes persis-
tently and provide an API with the following functionality:
instantiate, start, suspend, resume and kill processes as well
as a mechanism to read and write their persistent state and
listen for notifications to its changes.

In this section we describe how we implemented the
mapping of processes to resources in the context of JOpera
for Eclipse [21]. This tool can be used to graphically de-
fine Grid workflows and it includes an execution engine that
satisfies the aforementioned requirements. We first give an
overview over the execution environment’s architecture and
will then describe the implementation of the WS-RF and
WS-N interfaces in more detail.

5.1. Architecture

The architecture of the JOpera execution environment
can be described as a set of layers: the grid clients, the grid
service container, the execution engine (logically including

the persistent storage), its API and an open set of service
invocation adapters (Figure 1).

Grid
Engines

Grid
Portals

Grid
Apps

Engine API

Grid
Process
Execution
Engine

Grid Service
Container

Grid
Clients

WS-Resource

Grid Service Invocation Adapters

WS-RF SSH

Condor
Pools

WS-RF
Services

Globus
Pools

SOAP

Web
Services

Process Instances

Resource State

P
e

rs
is

te
n

t
S

to
ra

g
e

Condor

Figure 1. Layered architecture of the JOpera
Grid service composition engine

Thanks to its standards compliant WS-RF interface, var-
ious Grid Clients can connect to the system. These are,
e.g., Grid-enabled applications offloading some computa-
tionally intensive process to the process execution engine;
Grid portals providing users with an interface to monitor
the progress of the processes; other Grid service composi-
tion engines, thereby enabling recursive Grid service com-
position.

The Grid service container layer implements the map-
ping between the WS-Resource abstraction and the process
abstraction. By correlating the specific resource endpoint
reference passed by clients, it is able to address each pro-
cess instance and interact with it using the engine’s API.

The Execution Engine API provides an interface for
clients to manage and run processes in the JOpera execution
engine. With it, the Grid service container can instantiate,
run and stop processes and can also access and manipulate
their state.

The Execution Engine is mainly concerned with the ex-
ecution of the processes. It does so by invoking each Grid
service in the order defined by the control flow and by copy-
ing data between these invocations as specified in the data
flow. Intermediate results as well as execution related infor-
mation is stored in the Persistent State Storage. The persis-
tent state storage is implemented using a database.

The Grid Service Invocation Adapters are used by the
execution engine in order to call Grid services using the ap-
propriate mechanism and protocol. Adapters for Grid ser-
vices as well as different kinds of services can be plugged
into the JOpera execution engine. Using such adapters,
JOpera is currently able to invoke WS-RF compliant ser-
vices (e.g., Globus 4.0 services), plain Web services, and to
efficiently submit jobs to Condor [18] pools as well as jobs
in a Globus [9] command-line based environment accessed
through the SSH protocol.

5.2. Implementing the WS-RF and WS-N Interfaces

As depicted in Figure 1, Grid Clients access processes
using the WS-Resource hosted in the Grid service con-
tainer. Once a process has been deployed in the execution
engine, the corresponding WS-Resource will be deployed
in the Grid service container above it and a description of it
is made available as a WSDL. We have implemented the
WS-Resource using the WS-RF, Pubscribe and Address-
ing libraries developed as part of the Apache Web Service
project [2]. Although only one WS-Resource is deployed
per process, it provides access to all the instances of this
process by mapping different endpoint references to their
corresponding instance.

Instance lifecycle management: Upon receiving a re-
quest to instantiate a process, the WS-Resource will trigger
the corresponding instance creation in the underlying en-
gine. The engine returns an identifier for the instance back
to the WS-Resource, which then passes this to the client as
an endpoint reference. Conversely, if a client requests im-
mediate resource destruction, the WS-Resource will use the
execution engine API to stop the execution and to discard
the state of the corresponding process instance. The same
mechanism is used for scheduled destruction, where the en-
gine is notified by the container whenever the resource is
about to be destroyed.

Property manipulation: The WS-Resource keeps a list
of all properties that can be read and written by clients. The
set of properties is the same for all instances of a process
and is defined at deployment time of the process. In order
to implement the operations to set and get properties, the
WS-Resource keeps a copy of all relevant values for each
process instance. This is especially efficient for reading op-
erations. It however bears the overhead of always having to
update the copy of the value once the value in the persistent
state has changed. The operation used to set properties di-
rectly uses the engine API to update the corresponding state
attribute values.

Notifications: As discussed earlier, the topics are de-
fined to be the attributes of the persistent state. Using the
Subscribe operation, the client is able to subscribe to spe-
cific topics and will receive notifications once the value of
the subscribed topic has changed. In order to implement the
property change notification, the service container registers
listeners with the execution engine. These will receive no-

tifications once a state change occurs. Upon receipt of such
a notification, the new values are copied from the persis-
tent state to the WS-Resource in order to notify subscribed
clients. In order to keep track of the subscriptions, the WS-
Resource maintains a table of which client is subscribed to
what topic. Once it is informed about a change, it checks
which client is subscribed for these events and sends out
notifications.

6. Evaluation

In this section we evaluate the performance of the WS-
RF enabled process execution engine. We focus on deter-
mining the cost of several resource creation alternatives and
showing that the system can scale to handle a very large
number of resources.

The experiments have been carried out by installing the
JOpera Grid service composition engine on a server running
Linux (RedHat AS 4), equipped with two AMD Opteron
2.4GHz CPUs and 2GB of memory. The clients were run-
ning on a cluster of 64 dual processor (1Ghz) nodes con-
nected with a 100Mb/s local area network.

6.1. Resource Creation

In a first set of experiments, we measured the time re-
quired to instantiate a process and to subscribe to one of its
properties in 4 different ways. We did the first using the
startProcess (S) and the combination of startSuspended
and Resume (SR). The latter was done with a combination

Resource Instantiation Method

T
h

ro
u

g
h

p
u

t
(r

e
s

o
u

rc
e

s
/s

)

startProcess ()S startSuspended+Resume ()SR
startSubscribed ()SS startSuspended+Subscribe+Resume ()SSR

0

5

10

15

20

25

30

35

0 20 40 60 80 100

5

10

15

20

25

R
e
s
p

o
n

s
e

T
im

e
(s

)

Number of Clients

0

0 20 40 60 80 100

Figure 2. Throughput and response time of
different resource instantiation methods

of the three operations startSuspended, Subscribe and Re-
sume (SSR) and also with these three operations merged
into one, the startSubscribed (SS) operation. We ran the
experiments with up to 100 concurrent clients. The re-
sponse time and the throughput are shown in Figure 2.

Response Time: Resource creation with S has a lower
response time than SR because in the former case only one
operation is invoked compared to two in the latter case. The
response time for instantiation requests in both cases scales
linearly with the number of clients. Also SS performs faster
than SSR. This can again be attributed to the fact that the
former is executing only one operation whereas the latter
executes three. From the results it can also be observed that
the operations involving a subscription (SS and SSR) are
significantly slower than the others, even in the case of SS,
where instantiation and subscription are done atomically.
Thus, the time required to subscribe to a topic outweights
the time required for message transfer.

Throughput: The throughput (Figure 2 bottom) for the
different methods of resource creation gives a similar pic-
ture as the response time: S has the highest throughput, fol-
lowed by SR. Again, the two methods that include a sub-
scription to a topic, SS and SSR, have the lowest through-
put. This shows that subscription is costly, as multiple con-
current clients must be synchronized to access the shared
resources subscription table. For the operations involving
a subscription, we have also measured the throughput of
the notifications sent by the Grid service container to the
clients, observing that at most 26 notifications/second could
be sent for 6 clients, each creating and subscribing to 100
resources.

Process batch instantiation: In order to motivate the
need for the startBatch operation, we have also compared
the time it takes to instantiate process batches of different
sizes by calling the startProcess operation repeatedly and
the startBatch operation once. As can be seen in Figure
3, starting the process batch with the startBatch operation
is drastically faster. With it, creating 105 resources takes
less than a second, compared to almost 3 hours with the
startProcess operation.

Batch Size

T
o
ta

l
R

e
s
o
u
rc

e
C

re
a
ti
o
n

T
im

e
[s

]

10 100 1 000 10 000 50 000 100 000

startProcess startBatch

10000

1000

100

10

1

0.1

0.01

Figure 3. Comparison of different methods for
starting process batches

6.2. Querying Properties Overhead

In this experiment we used one client to create a resource
and get the value of one of its properties and measured the
time it requires to execute the getResourceProperty oper-
ation. The results shown in Figure 4 indicate that the time
required for the operation increases linearly with the num-
ber of resources instantiated starting at 40ms and growing to
only 70ms when 100’000 resources have been created. This
is because before the value of the property can be read and
be sent back, also here the resource must be found first. The
process of finding a resource of course takes longer with an
increasing number of instantiated resources.

0

20

40

60

80

100

0 20 000 40 000 60 000 80 000 100 000

Number of Resources

Number of Process Instances

P
ro

p
e
rt

y
A

c
c
e
s
s

T
im

e
(m

s
)

Figure 4. Property access overhead with an
increasingly large number of resources

7. Related Work

Only few research results are available in the context of
turning applications or service compositions into Grid ser-
vices. Initial work [10] was concerned with providing dis-
tributed applications with a Web service interface. The in-
terface was mainly used to authenticate and authorize users
as well as instantiate applications. Similar work [11] was
carried out in order to wrap command line-tools in Web ser-
vices to make them available for remote users. The lim-
itations of wrapping stateful resources with stateless Web
services however have been well-understood in the mean-
time [5]. In [24] the authors describe a system which turns
scientific legacy applications into Grid services and pub-
lishes these in a Grid portal. To do so a generic application
independent WS-RF layer is added on top of the legacy ap-
plication without having to generate additional code. This
approach is similar to ours insofar as they turn applications
into Grid services. Their implementation of the WS-RF
layer does however not exploit the full potential of the WS-
RF specifications by only implementing a small subset of
the operations specified in WS-RF, thereby lacking the sup-
port for lifetime, property and notification management.

8. Conclusions

In this paper we presented our approach describing how
to bridge the gap between two abstractions: resources and
processes. We did so in order to enable recursive composi-
tion of Grid services, where the process defining how Grid
services are composed, is published itself as a Grid service.
This mapping has been described in terms of the concepts
defined by the Web Service Resource Framework (WS-RF)
and Notifications (WS-N) and is applicable to several Grid
service composition languages and tools sharing the notion
of a process. With it, Grid computations modeled with a
process at design-time can be managed at run-time through
a standardized interface provided by the corresponding re-
source. By reporting on the implementation of such a map-
ping, we have shown the feasibility of using a WS-Resource
interface to initiate, monitor, steer, suspend, resume and
delete the persistent execution state of a Grid computation
by creating and destroying the associated resource and read-
ing, writing and subscribing to its properties. Finally, the
results of our experimental performance evaluation indicate
that the overhead introduced by the mapping layer is mini-
mal and that the system scales well to manage the lifecycle
of hundreds of thousands of resources representing process
instances in the underlying execution engine.

References

[1] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: killer application for
the global grid? . In Proc. of the 14th International Parallel
and Distributed Processing Symposium (IPDPS 2000), pages
520–528, Cancun, Mexico, 2000.

[2] Apache Software Foundation. Apache Web Services Project.
http://ws.apache.org.

[3] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow:
Workflow Management for Grid Computing. In CCGRID
’03: Proc. of the 3st International Symposium on Cluster
Computing and the Grid, page 198, Washington, DC, USA,
2003. IEEE Computer Society.

[4] F. Casati and M.-C. Shan. Dynamic and Adaptive composi-
tion of e-services. Information Systems, 26:143–163, 2001.

[5] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke. From Open Grid Ser-
vices Infrastructure to WSResource Framework: Refactor-
ing & Evolution, 2002. http://www.globus.org/wsrf/

specs/ogsi to wsrf 1.0.pdf.
[6] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Gra-

ham, I. Sedukhin, D. Snelling, S. Tuecke, and W. Vam-
benepe. The WS-Resource Framework, June 2005. http:
//www.globus.org/wsrf/specs/ws-wsrf.pdf.

[7] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow
management in griphyn. pages 99–116, 2004.

[8] T. Fahringer, J. Qin, and S. Hainzer. Specification of
Grid Workflow Applications with AGWL: An Abstract Grid
Workflow Language. In Proc. of Cluster Computing and Grid
(CCGrid), Cardiff, UK, 2005.

[9] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. The International Journal of Super-

computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[10] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govin-
daraju, L. Ramakrishnan, and A. Slominski. Grid Services
and Application Factories. Wiley, 2002.

[11] C. Goble, C. Wroe, and R. Stevens. Grid Project: Services,
Architecture and Demonstrator, 2003. http://www.nesc.

ac.uk/events/ahm2003/AHMCD/pdf/128.pdf.
[12] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robin-

son, and I. Sedukhin. Web Services Resource 1.2, June
2005. http://docs.oasis-open.org/wsrf/wsrf-ws

resource-1.2-spec-pr-01.pdf.
[13] S. Graham and B. Murray. Web Services Base Notification

1.2, 2004. http://docs.oasis-open.org/wsn/2004/
06/wsn-WS-BaseNotification-1.2-draft-03.pdf.

[14] S. Graham and J. Treadwell. Web Services Resource Prop-
erties 1.2, June 2004. http://docs.oasis-open.
org/wsrf/wsrf-ws resource properties-1.
2-spec-pr-01.pdf.

[15] S. Krishnan, P. Wagstrom, and G. von Laszewski.
GSFL: A Workflow Framework for Grid Services, 2002.
http://www-unix.mcs.anl.gov/∼laszewsk/bib/
papers/vonLaszewski--gsfl-a.pdf.

[16] C. Letondal. A Web interface generator for molecular biol-
ogy programs in Unix. Bioinformatics, 17(1):73–82, 2001.

[17] F. Leymann, D. Roller, and M.-T. Schmidt. Web services
and business process management. IBM Systems Journal,
41(2):198–211, 2002.

[18] M. Litzkow, M. Livney, and M. W. Mutka. Condor - a hunter
of idle workstations. In Proc. of the 8th International Con-
ference on Distributed Computing Systems, 1988.

[19] T. Maguire and D. Snelling. Web Services Service Group
1.2, June 2004. http://docs.oasis-open.org/wsrf/
wsrf-ws service group-1.2-spec-pr-01.pdf.

[20] K. M. McCann, M. Yarrow, A. DeVivo, and P. Mehrotra.
ScyFlow: An Environment for the Visual Specification and
Execution of Scientific Workflows. In Proc. of Workflow in
Grid Systems at GGF10, Berlin, Germany, 2004.

[21] C. Pautasso. JOpera: Process Support for more than Web
services. http://www.jopera.org.

[22] C. Pautasso and G. Alonso. The JOpera Visual Composi-
tion Language. Journal of Visual Languages and Computing,
16(1–2):119–152, 2004.

[23] C. Pautasso, T. Heinis, and G. Alonso. Autonomic Execution
of Web Service Compositions. In Proc. of the International
Conference on Web services 2005, Orlando, FL, USA, 2005.

[24] S. Sanjeepan, A. Matsunaga, L. Zhu, H. Lam, and J. A. B.
Fortes. A Service-Oriented, Scalable Approach to Grid-
Enabling of Legacy Scientific Applications. In Proc. of the
International Conference on Web services 2005, Orlando, FL,
USA, 2005.

[25] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana Applica-
tions within Grid Computing and Peer to Peer Environments.
Journal of Grid Computing, 1(2):199–217, 2003.

[26] W. Vambenepe. Web Services Base Topics 1.2, June
2004. http://docs.oasis-open.org/wsn/2004/06/
wsn-WS-Topics-1.2-draft-01.pdf.

[27] G. von Laszewski. Java CoG Kit Workflow Con-
cepts for Scientific Experiments, 2005. http:
//www-unix.mcs.anl.gov/∼laszewsk/papers/
vonLaszewski-workflow-taylor-anl.pdf.

[28] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid
Workflow using Tuple Spaces. In Proc. of the 5th IEEE/ACM
International Workshop on Grid Computing, Pittsburgh, PA,
USA, 2004.

