
Developing Scientific Workflows
from Heterogeneous Services

A. Tsalgatidou,
G. Athanasopoulos,

M. Pantazoglou
Dept. of Informatics & Telecom.

University of Athens (NKUA)
Athens 15784, Greece

{atsalga, gathanas, michaelp} @di.uoa.gr

C. Pautasso, T. Heinis
Department of Computer Science

Swiss Federal Institute of Technology
ETH Zentrum, 8092 Zurich,

Switzerland
{pautasso, heinist} @inf.ethz.ch

R. Grønmo, Hjørdis Hoff, Arne-
Jørgen Berre

 SINTEF Information and
Communication Technology

P.O.Box 124 Blindern, N-0314 Oslo,
Norway

{roy.gronmo, hjordis.hoff, arne.j.berre}@sintef.no

M. Glittum

Locus S.A. (LOCUS)
Leif Weldingsvei 6-8, Sandefjord, Norway

mg@locus.no

S. Topouzidou
Athens Technology Center (ATC)

Rizariou 10, Halandri, Athens, Greece
s.topouzidou@atc.gr

ABSTRACT
Scientific WorkFlows (SWFs) need to utilize components and
applications in order to satisfy the requirements of specific
workflow tasks. Technology trends in software development
signify a move from component-based to service-oriented
approach, therefore SWF will inevitably need appropriate tools to
discover and integrate heterogeneous services. In this paper we
present the SODIUM platform consisting of a set of languages
and tools as well as related middleware, for the development and
execution of scientific workflows composed of heterogeneous
services.

1. INTRODUCTION
Scientific WorkFlows (SWFs) have emerged as a response
to problems encompassing scientific problem solving
techniques and workflow features [4]. The main
characteristic of SWFs is the need for integration of
heterogeneous systems and components that provide
specific functionalities or data. This integration is not an
easy task and it is one of the main research issues in this
area.
Current trends in software engineering signify a move from
component-based to service-oriented development,
therefore, we believe that the development of SWFs will be
benefited by a service-oriented approach.
There are many types of services, including Web, Peer-to-
Peer (P2P) and Grid services, which employ
different/incompatible architectural models, protocols, and
standards for service description, discovery and
composition. However, to our best of knowledge, there is
no infrastructure or tools available for facilitating the
integration and interoperability of such services.

In this paper we present a platform called SODIUM
(Service Oriented Development In a Unified fraMework)
which provides a set of languages, tools and corresponding
middleware, for modeling and executing SWFs composed
of heterogeneous services (Web, P2P and Grid services).
In a service-oriented approach, the various workflow tasks
can be executed by various types of services (rather than
being programmed from scratch). Initially, these services
may not be known. Therefore, following a top-down
approach for developing a SWF, we need to model
requirements for services which will satisfy specific
workflow tasks. SODIUM provides a Visual Composition
Language (VSCL) and an associated VSCL Editor which
support this modeling task. The following step is to search
for appropriate services which can satisfy the requirements
of each task. There exist a large number of heterogeneous
services with incompatible protocols and standards which
makes their discovery a cumbersome task. SODIUM
provides a Unified Service Query Language (USQL) and
an associated query engine that support the discovery of
heterogeneous services in a unified way. Both semantic and
Quality-of-Service (QoS) information are utilized to
improve the discovery. However, the USQL language and
its associated engine are not responsible for maintaining
such information; rather, they rely on existing service
descriptions (e.g. OWL-S, WSDL-S, WS-QoS, etc.), which
are maintained by service providers and are published in
the various registries or networks. Selected services
substitute the requirements in each workflow task resulting
in a concrete SWF model. Next, VSCL graphs are mapped
to USCL (Unified Service Composition Language)
descriptions which are executed by the SODIUM workflow
execution engine. The main purpose of the latter is to

provide an efficient, reliable and scalable platform for
executing SWFs composed of heterogeneous services.
In the next section, we present a motivating scenario that
illustrates the need for the integration of heterogeneous
services in SWFs. Section 3 depicts the overall architecture
of the SODIUM platform and the constituent components.
Section 4 compares our work with existing related
approaches and finally Section 5 gives concluding remarks.

2. MOTIVATING SCENARIO
Our motivating scenario is from the Crisis Management
area, where an important task is to determine how to get to
a crisis location as fast as possible. For example in case of
an accident with severely injured people, it is critical to
reach these persons with the appropriate equipment within
minutes. In such cases, if the injury causes lack of oxygen
to the brain for 3-5 minutes, brain cells start to die and after
approx. 15 minutes there are permanent damages. Thus, it
is vital that properly equipped ambulances and other rescue
units are within a 15-minutes range at all times and places.
This requirement is very difficult to be satisfied due to the
vast set of parameters such as accident/injury probability,
population density and composition, accessibility, time of
day/week/month/year, weather conditions, hospital
locations and many others, which need to be considered.
A SWF providing for this scenario could take advantage of
information and resources offered by existing or emerging
services. Such services may be:
• Web services providing weather information such as

temperature and precipitation or traffic conditions from
roadside speed sensors and video surveillance cameras.

• Grid services providing driving route calculations,
historical incident information and "response range"
calculations based on current positions and conditions.

• P2P services providing information about the locations
and status of emergency vehicles and messaging
facilities to the emergency vehicles with reposition
message commands.

It is therefore imperative that a SWF supporting this
scenario is able to integrate heterogeneous services such as
the ones mentioned above.
3. SODIUM Architecture
Figure 1 provides an overview representation of the
SODIUM platform. As we can see, SODIUM introduces a
let of languages, tools and associated middleware.
The languages introduced by the SODIUM platform are:
• A Visual Service Composition Language (VSCL) for

designing workflow graphs at multiple levels of details.
• A Unified Service Composition Language (USCL) to

facilitate the construction of executable workflows
composing of and invoking various types of services.

• A Unified Service Query Language (USQL) to cater for
the open and unified discovery of heterogeneous
services enabling the preservation of the autonomy of
service registries.

Figure 1: SODIUM Platform overview architecture

With respect to tools and middleware, the SODIUM
platform provides the following:
• A Visual Service Composition Suite comprising:

o A Visual Editor enabling the construction and
analysis of VSCL Graphs.

o A Translation mechanism enabling the
transformation of the VSCL graphs into USCL.

• A Run Time Environment comprising components
necessary for the execution of the composite services:
o A search engine, namely USQL Engine, which

submits queries to heterogeneous service registries,
utilizing USQL.

o A Workflow Execution Engine which executes
workflows written in USCL. The workflow engine
invokes the different types of services and/or submits
USQL queries to the USQL Engine and subsequently
invokes the returned services.

In the following, we describe the three main components of
the SODIUM platform, i.e. the Visual Editor, the USQL
Engine and the Workflow Execution Engine.

3.1 Visual Editor
The Visual Editor is the SODIUM tool for creating SWF
models as VSCL graphs. The first step in constructing
VSCL graphs is to break down the workflow into tasks,
which can interoperate in order to finally achieve the
overall goal. This workflow model of tasks is called an
abstract model since there are no selected concrete services
identified in this phase. This abstract model is used to
search for appropriate candidate services to realize each of
the abstract tasks. When chosen services are selected for
each abstract task, the result is a concrete model. VSCL is
based on the Unified Modeling Language (UML) [22].

There are extensions to handle Web services, P2P services,
Grid services, semantics, QoS, and the relationship
between the abstract and the concrete model.
Figure 2 shows an abstract workflow model based on the
crisis management scenario presented in section 2. It is
abstract since we have only identified the tasks without any
concrete service implementations. Each task is defined with
enough semantic and QoS information so as to enable a
proper search for candidate services. Each task is
represented as a UML activity with a stereotype indicating
the type of service we are looking for. The goal is to create
a service-oriented workflow that monitors the position of
ambulance vehicles and sends messages to the ambulances
so that they can reposition themselves to achieve a better
coverage in a given area. The simplified scenario proposes
an ideal ambulance coverage to mean at least one
ambulance with a maximum 15-minutes response range for
any given position within the area. More realistic scenarios
would take into account issues like population density and
accident frequency that require better ambulance coverage
in certain areas.

AMBULANCE COVERAGE

Monitor And Adjust Vehicle Positions

areaOfConcern :Polygon

responseRangeCoverage :ImageMap

Start

«P2P»
Get Vehicle Positions

positions :PointList

«WebService»
Get Up-to-date Road

Network Data

roads :RoadNetwork

«WebService»
Get Traffic Information

trafficStatus :TrafficInfo

«GridService»
Calculate Vehicles 15 min.

Response Range

responseRanges :VehicleResponseRangeList

«GridService»
Calculate Best Position of

Vehicles

idealPositions :VehiclesIdealPositions

«P2P»
Send Reposition Message

to Vehicles

«WebService»
Display Vehicles

Response Ranges on Map

EndFlow EndFlow

Figure 2: Workflow with heterogeneous services

The workflow takes as input an areaOfConcern (i.e.
geographical region of concern) which is dispatched at the
same time to three different services running in parallel: (1)
a Web service returning up-to-date road network data, (2) a
P2P service returning the current position of all ambulance
vehicles and (3) a Web service returning current traffic
information. Results of the three services are forwarded to
a Grid service, which calculates the 15-minutes response

range for each vehicle. This information is sent to a Web
service used to display it on a map covering the original
areaOfConcern and to a Grid service to calculate the ideal
repositioning of the vehicles. These positions are sent to
each vehicle by invoking a P2P service. The map produced
by the Web service is the output data object returned by the
workflow.
All tasks in the abstract workflow model are associated
with Quality-of-Service (QoS) requirements and
semantically grounded definitions. This improves the
precision of the query for concrete services since
inappropriate services are omitted from the search results.

AbstractTask

«WebService»
Get Traffic Information

trafficStatus :TrafficInfo

areaOfConcern :Polygon

«Ontology»
RoadInformation

+ RoadNetwork
+ TrafficInfo

«Ontology»
Geometry

+ Point
+ Polygon

<<QoSRequirements>>
{ Context Price: perCall <= 50 }

«QoSCharacteristic»
Price

<<ServiceDomain>>
Name = Transportation, URI = www.../transport

{uri = www.../Geometry} {uri = www.../Road}{uri = www.../Geometry} {uri = www.../Road}

- «QoSDimension» perCall: real
{direction = decreasing, unit = euro}{direction = decreasing, unit = euro}

Figure 3: Detailed task with QoS requirement and

semantics
Figure 3 illustrates how we can model QoS and semantics
for the Get Traffic Information task of Figure 2. A note is
attached to the task with a pre-defined stereotype
QoSRequirement. The QoS requirement specifies that the
‘price per call’ of the service must be less-than-or-equal-to
50 euro. The ‘price per call’ is a QoS concept that needs to
be defined within a UML class with the stereotype
QoSCharacteristic. The Get Traffic Information task is also
semantically annotated by defining a service domain and
by defining the input and output data objects as semantic
types. The semantic types of the data objects are placed in a
UML package stereotyped as Ontology. The ontology
package corresponds to an existing domain ontology
identified by the UML tagged value uri. The
areaOfConcern input data object is assigned the Polygon
type which is a semantic type defined within the Geometry
ontology, represented by a UML package. It should be
noted, that any domain ontology could be practically used
as the source for semantically annotating tasks. VSCL,
along with USQL, are flexible enough so as to
accommodate different ontologies. Nevertheless, an upper
domain ontology has been established and is maintained by
the USQL Engine, within the scope of SODIUM. More
details regarding the upper ontology are provided in the
next section (3.2), as well as in [23].
The semantic modeling of services is an extension to UML
provided by the SODIUM project. For the QoS notation we

recommend the use of the OMG’s UML profile for
modeling QoS and Fault Tolerance [14].
A concrete workflow model extends the abstract workflow
model with chosen services (that have been discovered via
the USQL Engine) for each of the abstract tasks. The
concrete workflow model can then be automatically
translated into the lexical USCL language which can be
executed by the workflow execution engine [24]. The next
section explains how the USQL engine is used to discover
appropriate services to register in the concrete workflow
model.

3.2 USQL Engine
The USQL Engine is used for discovering services by
searching heterogeneous service registries. The engine
implements USQL (Unified Service Query Language), an
XML-based query language providing all necessary
structures and elements to cater for the unified and
standards-based service requests over heterogeneous
registries and/or networks. USQL allows requestors to
formulate expressive, semantically enhanced queries,
which reflect their actual needs and requirements. Queries
may also be enriched with the specification of QoS criteria,
so as to bring the resulting services as close as possible to
the demands of real-world scientific applications.
An example USQL request reflecting the service
requirements of Figure 3 is depicted in Figure 4.

Figure 4: A sample USQL request

The main concept underlying the USQL Engine framework
is the abstraction regarding registry details, from the
requestor’s perspective. This is achieved with the adoption
of a domain-centric categorization of the various supported
registries, depending on the service advertisements they
host. Domain information provided by the requestor is
exploited by the engine so as to identify, access and query
the appropriate registries in a transparent manner.
The USQL Engine accomplishes this type of domain-
driven registry categorization with the introduction of an
Upper Ontology, which provides a set of classes along with

their properties and relations, thus allowing for the
application of reasoning within the course of service
discovery. The upper ontology associates registries with
domains, and concepts with domains. Concepts may be
either operations or data that are relative to a specific
domain, and are used for semantically annotating USQL
requests, as well as in the matchmaking process. Moreover,
an ontology mapping mechanism is used to ensure
interoperability, as far as support for service descriptions
abiding by different ontology frameworks and/or
vocabularies is concerned. Maintenance of the Upper
Ontology is part of the USQL Engine configuration
process, so that service requestors can focus on the
thorough and consistent expression of their queries.
The USQL engine architecture is distinguished by its high
degree of openness and extensibility, which is achieved by
using plug-in mechanisms in order to accommodate
virtually any type of service, registry, as well as their
governing protocols and standards. The plug-ins used for
this purpose can be integrated in a flexible manner, so as to
enable different configurations and to broaden the range of
supported registries.
The USQL Engine is a crucial component within the
context of a scientific workflow engine facilitating the
discovery of heterogeneous services that are used for
solving a scientific problem. The service discovery results
are used to transform abstract workflow graphs conveying
orchestrated tasks and their respective requirements into
concrete service workflows that are then executed by the
SODIUM workflow engine. Alternatively, the USQL
Engine may be used at run-time for the discovery of
appropriate services to fulfill specific tasks within the
workflow.

3.3 Workflow Execution Engine
The engine receives USCL documents containing the
definitions of the workflows and exposes an API for
initiating, monitoring, and managing their execution. In
addition, workflows can be exposed as Web services [10];
hence, it is possible to access them from client applications
through standard interfaces.
The core infrastructure used to run USCL workflows is
described as follows. The execution of a workflow begins
with a request sent through the corresponding API of the
engine. The engine API queues the request and handles it
by creating and enacting a new workflow instance. The
current state of the execution of a process is used to
determine which tasks should be invoked based on the
control and data flow dependencies that are triggered by
the completion of the previous tasks.
Invocation of the tasks equals to invocation of their
respective services and is achieved with the appropriate
plug-ins. These provide a concrete implementation of the
service invocation mechanisms and protocols. After the

execution of the task has been finished, the state of the
corresponding process is updated and the execution of the
workflow continues. Execution of the workflow is
separated from the execution of its tasks since these
operations have a different level of granularity and quite
often the execution of a task may last significantly longer
than the time taken for scheduling it. Thus, the engine
supports parallel invocation of multiple tasks belonging to
the same process. Furthermore, a slow task does not affect
the execution of other processes running concurrently
because these two operations are handled asynchronously
by different threads.
The SODIUM workflow engine provides for the
persistence of the state information about the process
instances following a design that has been influenced by
many requirements, such as performance, reliability, and
portability across different data repositories. Access to the
state information of the workflow instances is provided in
terms of a key-value data model which uniquely identifies
a certain data (or meta-data) value associated with a
process (and task) instance. The state information data
model is independent of the physical location of the data,
so that it is possible to use caching to exploit locality and –
for increased availability – replicate some of the values.
Along these lines, in order to provide a level of scalability
which complies with what is required in a scientific
workflow setting, state management can be optimized to
keep only a subset of all of the workflow instances in
memory and, for instance, swap workflows whose
execution has been completed to secondary storage, in a
so-called process history space. In this way, the SODIUM
engine gives access to the state of past executions to enable
workflow profiling and optimization, caching of already
computed results as well as lineage tracking analysis.
Additionally, this functionality can be implemented with
several different storage technologies along the full
spectrum of the persistence versus performance overhead
trade off. In the context of the crisis management example,
this functionality helps to optimize the performance of the
workflow execution as follows. The expensive re-
computation of the 15-minutes response range can be
avoided if neither the vehicle positions, nor the traffic
conditions have changed with respect to a previous
execution. Similarly, it is possible to avoid the potentially
large download of the same road network data for repeated
executions of the workflow with the same input
areaOfConcern.
The architecture of the SODIUM workflow execution
engine employs plug-ins to support an open set of
heterogeneous service invocation mechanisms.

3.4 Web Service Plug-in
The first of such plug-ins is responsible for the invocation
of standards-compliant Web services described by WSDL
[2]. These services are remotely accessible through the

SOAP protocol [1]. By utilizing the information returned
by a USQL response1 which provides the URI of a WSDL
document describing the selected service, the port, service
and operation name as well as the arguments for the
operation, the Web service plug-in invokes the Web
service by dynamically assembling a SOAP message and
sending it to the service provider. Upon receiving a
response, the results are extracted and passed back to the
workflow engine. For example, in order to invoke the “Get
Traffic Information” Web service of Figure 3, the plug-in
uses the URI to the WSDL returned by the USQL response
to the USQL query of Figure 4, selects the port bound to
the SOAP protocol and sends a request message to the
GetTrafficInformation operation. This message contains the
XML serialization of the input parameter areaOfConcern.

3.5 Grid Service Plug-in
The Grid service plug-in has been developed in accordance
to the Web Services Resource Framework (WSRF) [3]
specifications, which have been defined as to shift from the
rather stateless paradigm of Web services to the stateful
model of Grid services. To do so, WSRF loosely couples a
Web service with a stateful resource and provides well-
defined methods to access and manage its state.
Thus, in contrast to using only the service URI as is the
case for Web services, Grid services also require a resource
instance identifier. Therefore, in addition to the arguments
passed to the Web service plug-in, the Grid service plug-in
also requires a resource instance identifier.

3.6 P2P Service Plug-in
As far as P2P services are concerned, JXTA [19] is one of
the most well known platforms for the development of P2P
service-oriented applications, therefore JXTA services
have been appointed as a supported type of P2P services,
with respect to the SODIUM platform. Nevertheless, the
mechanisms and facilities provided by the JXTA platform
for the description and invocation of JXTA P2P services
are rather limited or vague. To address this, we follow an
approach based on the use of enhanced description
documents and a library of java classes facilitating the
binding and invocation of JXTA P2P services.
The pursued approach does not modify the infrastructure or
protocols that are used by the JXTA services; rather, it
enhances them so as more advanced discovery and binding
mechanisms can be used. Furthermore, the P2P service
model is not infringed, since the workflow engine actually

1 A USQL query is submitted to the USQL engine either at design

time (in which case service-related information returned by the
USQL response is integrated in the VSCL graph, then mapped
to a USCL document and subsequently utilized by the execution
engine for invoking the service) or at run time, thus supporting
dynamic discovery of services.

becomes a node in the respective P2P network, through the
plug-in.

4. RELATED WORK
SODIUM provides for the service-oriented development of
SWFs. Its contribution lies in the areas of SWF modeling
(VSCL with editor), execution (USCL with execution
engine), and in service discovery (USQL with query
engine). In the following we compare the SODIUM results
with existing work in each of these areas.
Similar to KEPLER [5][12] SODIUM’s workflow
modeling languages (VSCL and USCL) are primarily
based on data flow constructs, as this is the most common
representation used to model scientific computations.
While KEPLER is confined to Web services, SODIUM
allows for the discovery and composition of Grid, as well
as P2P services, providing support for semantics and QoS
metadata which can be used for optimized service selection
[9]. Triana [21] is a framework for composing scientific
applications. Unlike USCL, the supported workflow
language does not provide explicit support for control
constructs, while its visual representation is not standard-
based with respect to VSCL. For more information on
other research projects (e.g., Askalon, Unicore, Karajan)
related to scientific workflow management, we refer the
reader to [13] and [25].
Considering the scale of the data and the computational
resources required by scientific applications, scientific
workflow systems must take into account resource
management and scheduling features typical of high
performance computing environment and tools [7], [11]. In
this regard, the Pegasus workflow mapping system [8]
shares with SODIUM the idea of mapping a workflow
between different levels of abstraction, where an abstract
workflow is dynamically bound with run-time information
describing the Grid resources that are used to execute its
activities. A different kind of mapping is related to
providing data transformation capabilities so that
mismatching scientific data sources and incompatible tools
can be integrated e.g., [6]. Thanks to its extensibility,
SODIUM features a rich set of data transformation
techniques such as XSLT [16], XQuery [17] as well as
QVT [15] so that the most optimal one in terms of run-time
performance and development effort can be applied.
The use of a service-oriented approach to SWF
development introduces the need for service discovery
which is only partially addressed by other approaches to
SWF development [20]. In the areas of Web, Grid, and P2P
services, service discovery is performed with the use of
custom and incompatible APIs and discovery mechanisms
offered by registries and networks [18] [19]. Nevertheless,
service-oriented development lacks a query language that
would enable accessing and querying heterogeneous
registries in a unified and standards-based manner.

Moreover, exploitation of semantics and QoS within
service descriptions proves to be a crucial part of service
discovery. USQL and its engine address these issues and
constitute a stepping stone to the unification of the various
heterogeneous service areas.

5. DISCUSSION AND CONCLUSIONS
Service Oriented Computing (SOC) is a new trend in
software engineering. SOC is already affecting the
development of business oriented systems and we believe
that it will inevitably affect the development of SWFs
turning them into service compositions. However, the
heterogeneity in protocols and standards of existing service
types is a major obstacle for the discovery of services and
their integration in scientific workflows.
In this paper we briefly described a platform called
SODIUM which provides tools, languages and related
middleware for supporting the whole lifecycle of SWFs
(i.e. from requirements modeling to their execution)
composed of heterogeneous services. Specifically,
SODIUM supports abstract as well as concrete modeling of
workflows (by providing the VSCL language and editor),
uniform discovery of constituent heterogeneous services
(through USQL and the query engine) and execution of
service workflows (through the USCL Engine).
The open and extendable architecture of SODIUM doesn’t
alter the underlying protocols and infrastructure used by
the various services, but rather hides the specific details
from the workflow developers. Furthermore, besides the
service types currently supported, i.e. Web, Grid and P2P,
SODIUM provides for the easy integration of any other
service type.
Acknowledgement. This work has been partially
supported by the European Commission under the contract
IST-FP6-004559 (project SODIUM: Service Oriented
Development in a Unified fraMework).

6. REFERENCES
[1] W3C, 2001, SOAP 1.1, http://www.w3.org/TR/SOAP
[2] W3C, 2001, WSDL 1.1, http://www.w3.org/TR/wsdl
[3] OASIS, 2004, WSRF, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf
[4] Singh, M. P., and Vouk, M. A. "Scientific Workflows:

Scientific Workflow Meets Transactional Workflow."
NSF Workshop on Workflow and Process Automation
in Information Systems: State of the Art and Future
Directions, Athens, GA, USA, 1996

[5] I. Altintas et al, Kepler: An Extensible System for
Design and Execution of Scientific Workflows,
SSDBM'04, 21-23 June 2004, Santorini Island,
Greece.

[6] Shawn Bowers and Bertram Ludäscher An Ontology-
Driven Framework for Data Transformation in

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.sdsc.edu/~ludaesch/Paper/ssdbm04-kepler.pdf
http://www.sdsc.edu/~ludaesch/Paper/ssdbm04-kepler.pdf
http://cgi.di.uoa.gr/%7Essdbm04/
http://users.sdsc.edu/~bowers/cv_html/bowers_ONTOTRANS_dils04.pdf
http://users.sdsc.edu/~bowers/cv_html/bowers_ONTOTRANS_dils04.pdf

Scientific Workflows In Procs of DILS'04, Leipzig,
Germany, Springer, LNCS, volume 2994.

[7] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd, GridFlow:
Workflow Management for Grid Computing, Proc. of
the 3rd International Symposium on Cluster
Computing and the Grid, Tokyo, Japan, May 2003.

[8] E. Deelman et al, Pegasus : Mapping Scientific
Workflows onto the Grid, Across Grids Conference
2004, Nicosia, Cyprus, 2004.

[9] R. Grønmo, M. C. Jaeger Model-Driven Methodology
for Building QoS-Optimised Web Service
Compositions. In Procs of DAIS ’05 Athens, Greece.

[10] T. Heinis, C. Pautasso, G. Alonso, O. Deak,
Publishing Persistent Grid Computations as WS
Resources, In: Proceedings of the 1st IEEE
International Conference on e-Science and Grid
Computing (e-Science 2005), Melbourne, Australia,
December 2005.

[11] S. Krishnan, P. Wagstrom, and G. von Laszewski.
GSFL: A Workflow Framework for Grid Services.
Technical Report, Argonne National Laboratory,
Preprint ANL/MCS-P980-0802, August 2002.

[12] B. Ludäscher et al, Scientific Workflow Management
and the Kepler System, Concurrency and
Computation: Practice & Experience, Special Issue on
Scientific Workflows, to appear, 2005.

[13] Bertram Ludäscher and Carole Goble, Special Section
on Scientific Workflows, SIGMOD Record, 34(3),
September 2005.

[14] OMG, UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms,
OMG Final Adopted Specification, ptc/04-09-01

[15] QVT-Merge Group. Revised submission for MOF 2.0
Query/Views/Transformations OMG document:
ad/2004-10-04 version 1

[16] XSLT, http://www.w3.org/TR/xslt
[17] XQuery, http://www.w3.org/TR/xquery/
[18] UDDI, http://www.uddi.org
[19] JXTA Technology, http://www.jxta.org
[20] I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, A.

Memon, “A Web Service Composition and
Deployment Framework for Scientific Workflows”,
ICWS 2004

[21] Matthew Shields, Ian Taylor, “Programming Scientific
and Distributed Workflow with Triana Services”, In
Proceedings of Workflow in Grid Systems Workshop in
GGF10, at Berlin, Germany, March 2004

[22] OMG, “Unified Modeling Language: Superstructure,
version 2.0”, OMG Final Adopted Specification,
ptc/04-10-02

[23] Aphrodite Tsalgatidou, George Athanasopoulos,
Michael Pantazoglou, "Semantically Enhanced
Discovery of Heterogeneous Services",
1st International IFIP/WG12.5 Working Conference
on Industrial Applications of Semantic Web
(IASW2005), 25-27 August 2005, Jyväskylä, Finland

[24] David Skogan, Hjørdis Hoff, Roy Grønmo, Tor Neple,
“D9-Detailed Specification of the SODIUM Service
Composition Suite”, SODIUM (IST-FP6-004559)
project’s deliverable, June 2005

[25] Jia Yu and Rajkumar Buyya, “A Taxonomy of
Workflow Management Systems for Grid Computing”,
Technical Report, GRIDS-TR-2005-1, Grid
Computing and Distributed Systems Laboratory,
University of Melbourne, Australia, March 10, 2005

http://users.sdsc.edu/~bowers/cv_html/bowers_ONTOTRANS_dils04.pdf
http://www.isi.edu/~deelman/Pegasus/Pegasus_final.pdf
http://www.isi.edu/~deelman/Pegasus/Pegasus_final.pdf
http://www.iks.inf.ethz.ch/publications/escience05.html
http://www.iks.inf.ethz.ch/publications/escience05.html
http://www.gridbus.org/escience/
http://users.sdsc.edu/~sriram/publications/gsfl.pdf
http://users.sdsc.edu/~ludaesch/Paper/kepler-swf.pdf
http://users.sdsc.edu/~ludaesch/Paper/kepler-swf.pdf
http://www.sigmod.org/sigmod/record/issues/0509/index.html
http://www.sigmod.org/sigmod/record/issues/0509/index.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://www.uddi.org/
http://www.jxta.org/

	1. INTRODUCTION
	2. MOTIVATING SCENARIO
	3. SODIUM Architecture
	3.1 Visual Editor
	3.2 USQL Engine
	3.3 Workflow Execution Engine
	3.4 Web Service Plug-in
	3.5 Grid Service Plug-in
	3.6 P2P Service Plug-in

	4. RELATED WORK
	5. DISCUSSION AND CONCLUSIONS
	6. REFERENCES

