
Decentralized Computation Offloading
on the Edge with Liquid WebWorkers

Andrea Gallidabino and Cesare Pautasso

Software Institute, Faculty of Informatics, USI Lugano, Switzerland
{name.surname}@usi.ch

Abstract. Liquid Web applications seamlessly flow across any kind of
device ranging from powerful desktop and laptop devices to smaller de-
vices, such as tablets, smart phones or any device capable of running
a Web browser. In this context, there is the opportunity to reduce the
execution time of CPU-intensive tasks or limit their energy consumption
by offloading them across the set of machines running the liquid Web ap-
plication. To do so, in this paper we present Liquid WebWorkers, which
build upon the standard HTML5 WebWorker API and transparently of-
fload the task execution to other devices and manage the corresponding
data transfer. This way, Web developers can reuse their existing Web-
Worker scripts without any changes. We present how to create a pool
of paired devices and compare different policies for choosing the target
device that have been implemented in the Liquid.js framework.

Keywords: WebWorkers, Edge Computing, Liquid Software

1 Introduction

Nowadays users connected to the Web own more than three devices, ranging
from powerful desktops and laptops to smaller devices, such as tablets, smart
phones or smart watches [9]. As the average number of devices per user increases,
this affects the way users interact with their software applications running across
the set of devices they own [8]. The Liquid Software paradigm [11,20] empowers
users to run their applications on a set of multiple heterogeneous devices. In
this paper we focus on the parallel screening scenario where one or multiple
users run applications across multiple devices at the same time. While we have
previously discussed how the liquid Web application may be designed to take
advantage of all available devices [7], in this paper we focus on the computational
aspects of the application. Users interacting with multiple devices may trigger
data synchronization activities that will ensure a consistent view over the state
of the distributed Web application is presented. Having multiple, partially idle
devices also opens up the opportunity to exploit their computational resources
to speed up CPU-intensive tasks.

In this paper we present Liquid WebWorkers, a novel abstraction built on
top of the standard HTML5 WebWorker API1, which allow developers to add
1 https://html.spec.whatwg.org/multipage/workers.html

https://html.spec.whatwg.org/multipage/workers.html


parallelism to their liquid Web applications by offloading computational tasks
from a device to another with the goal of executing CPU-intensive tasks across
the most suitable user-owned device. This will contribute to speed up the over-
all computation of the response that later will be propagated across all paired
devices.

2 Related Work

The technological foundation of Liquid Software emerges from the Internet of
Things [1], the Web of Things [10], or more in general the Programmable World [19].
Users live inside an adaptive ecosystem composed of all smart objects surround-
ing them [21]; whenever a smart object enters or leaves the proximity of the
user, the liquid software automatically grows or shrinks, adapting itself to the
new set of devices.

Edge computing [18] research focuses on optimizing data processing and stor-
age by shifting computations closer to the source of the data, as opposed to
shipping a copy of the data to large, centralized Cloud data centers [17]. The
optimization reduces bandwidth consumption and latency in the communication
between the edge devices, making it possible to reduce overall processing time
of an operation. Fog computing [2,15] takes edge computing to the extreme,
by making it possible to make all data processing computation within the IoT
ecosystem. Liquid Software also incorporates such performance goals, in order
to seamlessly migrate applications among multiple user-owned devices without
relying on centralized Web servers. Similar concepts can also be found in the
ubiquitous computing [16] literature.

Traditionally the distributed computational resources was given mainly by
server centric clusters of computers or the cloud, however it is demonstrated
that the Web, by employing Web browsers and WebWorkers, is ready to be a
decentralized computation platform [3] as well. While most existing computa-
tional offloading work focuses on shifting workloads from mobile devices to the
Cloud [4], in this paper we study how to use nearby devices. While these may
not be as powerful as a Cloud data center, they will remain under the full control
of their owners and enjoy a better proximity on the network.

Hirsch et al. [12] propose a technique for scheduling computation offloading
in grids composed by mobile devices. The scheduling logic of the system is able
to offload a set of heterogeneous jobs to any mobile devices during an initial cen-
tralized decision-making phase. This is followed by the job stealing phase, when
jobs are relocated to other devices in a decentralized manner. The scheduler con-
siders the battery status, the CPU performance and the uptime expectation of
all connected devices when it has to decide where to offload jobs. The CPU per-
formance is computed using a benchmark. While this approach shows promising
results and it is able increase the overall performance of computational-intensive
applications, in this paper we present a fully decentralized approach able to oper-
ate inside a Web browser, where complete information about a devices hardware
and software configuration is not always accessible.

2



Loke et al. [14], propose a similar system allowing multi-layered job stealing
techniques also with a hybrid approach (both centralized and decentralized) to
offload decision making.

3 Liquid WebWorkers

Like standard HTML5 WebWorkers, also Liquid WebWorkers (LWW) are de-
signed to perform background computations in a parallel thread of execution.
Unlike standard HTML5 WebWorkers, the work can be potentially be offloaded
across different devices. To do so, LWW use a simpler stateless programming
model, which helps developers identify the boundaries of the task to be of-
floaded. Liquid WebWorkers receive discrete atomic jobs to be processed and
produce the corresponding results all at once. The computational offloading is
kept completely transparent from the developer, who can use specific task place-
ment policies to prioritize the available devices according to different criteria.

3.1 APIs

Liquid WebWorkers take care of executing tasks by invoking the corresponding
HTML5 WebWorker. Liquid WebWorkers are organized into a Pool, whose goal
is to manage their lifecycle, transparently choose on which machine input tasks
should be executed and reliably dispatch tasks towards the corresponding LWW,
which can be located either locally or remotely.

The Liquid WebWorker pool and the Liquid WebWorker expose their own
API that can be used by the developer for building multi-device Liquid appli-
cations. Operations inside the LWW pool are executed asynchronously because
they require to communicate with remote devices or exchange messages between
the global JavaScript context and the worker. For this reason we decided to
deal with asynchronous operations with Promises2, which may return either a
successful or a failing callback upon completion.

A rejected promise may return two types of error: either a communication

error or an execution error. In the first case a failure happens during the offload-
ing of a task from a device to another due to a problem in the sending process,
either because there is no connection linking the two devices, because the remote
machine is currently unavailable, or because a timeout happened. The second
error type is thrown whenever there is a problem with a LWW instance, either
because the pinged LWW is not yet instantiated or there was an internal error
in the LWW execution.

Liquid WebWorker Pool API Table 1 lists all methods exposed by the
API and its constructor. The Liquid WebWorker pool can be instantiated by
passing the reference to a sendMessage function whose signature must accept
2 https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_
Objects/Promise

3

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise


Table 1: Liquid WebWorker Pool API
Liquid WebWorker Pool API
Constructor
LiquidWebWorkerPool(sendMessageFunction)
sendMessageFunction signature
sendMessage(deviceID, message)
Method name and parameters Return value
createWorker(workerName, scriptURI) Promise(workerInstance)
getWorkerList() Promise(workerNameList)
updatePairedDevice(deviceID, data) Promise(deviceID)
removePairedDevice(deviceID) Promise(deviceID)
callWorker(workerName, message) Promise(response)
_callWorker(workerName, message) Promise(response)
forwardMessage(message) Promise()
terminateWorker(workerName) Promise(workerName)

two parameters: deviceID and message. This function will be called every time
the LWW pool has to deliver a message to another device, it does not matter
to the pool how the payload is delivered but the pool expects that the function
reliably delivers the whole message object to the device labeled as deviceID.

The pool exposes eight methods:
– createWorker: instantiate a new LWW and bind it to the LWW pool

automatically. The pool may contain any number of workers, limited only by
the memory available to the Web browser. WorkerNames are unique, if the pool
is requested to create a worker with an already existing name, then it will fail
and return a rejected Promise. The script can be either a URL pointing to a Web
resource, or it can be a String containing the actual script. Both parameters are
required.

– getWorkerList: this method returns a dictionary object containing all
the references to the instantiated LWWs contained in the pool indexed by the
corresponding workerNames.

– updatePairedDevice: this method updates the information about the
paired devices stored inside the pool. The deviceID is the same that will be passed
in the sendMessage function whenever it will be called. The data is stored in an
object that contains the information about all devices. Depending on the policy
rules employed this object may contain different information (see subsection 6.1).

– removePairedDevice: this method removes a paired device from the
stored list of paired devices.

– callWorker: the callWorker is used to submit a task into the pool, which
later will be executed either locally or remotely. Once submitted the pool decides
where the task will be ran, then it creates the corresponding promises and calls
the sendMessage function if the task is executed remotely, otherwise it will call
the _callWorker function.

4



Table 2: Liquid WebWorker API
Liquid WebWorker API
Constructor
LiquidWebWorker(LWWpool, workerName, scriptURI)
Method name and parameters Return value
callWorker(message) Promise(response)
_callWorker(message) Promise(response)
terminate() Promise(workerName)

– _callWorker: this method is used to submit a task into the pool which
is forced to run locally. This method directly pushes the task message into the
right LWW instance and waits for its asynchronous response by setting up a
promise object.

– forwardMessage: whenever a device receives a message sent from the
sendMessage function, it must be forwarded inside the pool so that it can be
executed on the remote device. The developer must forward those messages into
the LWW pool by calling the forwardMessage function.

– terminateWorker: this method ends the lifecycle of a LWW instantiated
inside the pool. If the workerName is invalid or undefined it returns an error.

Liquid WebWorker API Table 2 lists all methods exposed by the LWW and
its constructor. If an invalid or undefined LWW pool is passed as parameter
of the constructor, then the methods callWorker and _callWorker will behave
equivalently and the Liquid WebWorker will not offload the execution on remote
devices. That is because, without a connected pool, the LWW cannot poll it and
ask where the submitted tasks should be executed. The LWW is stateless, thus
it does not store information about paired devices nor it knows if it is paired to
other LWWs.

The developers can call methods on the worker instances without the need to
proxy their execution requests on the pool, since the Liquid WebWorker object
itself exposes an API. The LWW exposes three methods:

– callWorker: this method submits a task into the LWW, if the worker is
bound to a LWW pool then it will request the pool if the task should be executed
remotely or not, otherwise it will automatically call the _callWorker method.

– _callWorker: this method bypasses the LWW pool policies and executes
the tasks directly on the issued worker locally.

– terminate: this function will terminate the WebWorker instantiated in
the background, making it possible to safely delete all references pointing to the
LWW instance.

3.2 Design

Figure 1 shows the main components of the Liquid WebWorker pool running
across two devices. Tasks can be submitted from either devices and the pool will

5



Task:
- worker #x

- inputs

Dispatcher

Execution
Promises

Policy

Device
Pairings

API

Middleware Middleware

Liquid WebWorker Pool

Messages

Dispatcher

Execution
Promises

LWW #2

LWW #3

LWW #4

LWW #5

LWW #1

LWW #2

LWW #6

LWW #7

LWW #1

Policy

Device
Pairings

API

Liquid WebWorker Pool

Device 2Device 1

Fig. 1: Liquid WebWorkers Architecture. Arrows show the flow of a task and the
exchange of messages between clients. Dotted lines indicate paired relationships
between Liquid WebWorker instances.

decide whether they will be executed using workers of the local pool, or they
will be offloaded to other devices.

In addition to the set of workers, the LWW pool stores references to the
submitted and the currently executing tasks in the form of pending promises. It
also maintains information about the paired devices:

– pending promises: for all submitted tasks, the pool creates a promise
that waits for the worker to complete the computation and return the results by
posting the response and its unique identifier. The promise contains the callback
that must be fulfilled or rejected when the remote device or the local worker
respond. The payload of the response contains the identifier of the corresponding
promise, which can be easily retrieved from the corresponding dictionary inside
the LWW pool.

– paired devices: the pool keeps track of all paired devices. This informa-
tion contains the hardware specification of the devices, such as its type (e.g.
Desktop or Phone) or any other information useful to the policy component for
taking task offloading decisions (e.g. processor specs, battery level, OS version).

The dispatcher component forwards tasks to the right LWW and thus the
right device. The decision on where the execution of the task will happen is con-
trolled by the policy component, which uses data fed from the device pairings

storage in order to take a decision. Whenever the dispatcher forwards a task,
then it also save the corresponding callback promise. In the case of remote ex-
ecution offloading, the dispatcher does not send the task directly to the remote
device, but it sends messages through a pre-configured connection middleware
(see section 3.1). Each message contains in its payload the corresponding promise

identifier, the inputs of the task that need to be executed, and the name of the
worker that must be invoked on the remote machine.

6



Caller
Local

Device1

Policy
Local

Device1

Dispatcher
Local

Device1

Worker
Local

Device1

Dispatcher
Remote
Device2

Worker
Remote
Device2

callWorker("w2", msg)

_where("w2", msg)

local
_callWorker("w2", msg)

response

response

Local executionLocal execution

callWorker("w1", msg)

_where("w1", msg)

"device2"
sendMessage("device2", msg*)

_callWorker("w1", msg)

response

response

response

Remote executionRemote execution

Fig. 2: Liquid WebWorker local and remote execution sequence diagram

The dispatcher component can create new WebWorkers either by passing an
URI pointing to a script stored in a central server, or by passing the content of
the script as a String that can be directly shared between devices without the
need to fetch it from a Web server. In the latter case the dispatcher is able to
instantiate the WebWorker script by converting the String to a Blob3 Object.

LWW are designed to be used for stateless computation; in fact, paired
workers do not share or synchronize any data among each other. Likewise, every
job is treated as an independent computation. Nevertheless it is possible to
simulate stateful computations by submitting a task that would include as input

3 https://developer.mozilla.org/it/docs/Web/API/Blob

7

https://developer.mozilla.org/it/docs/Web/API/Blob


the previous state of the worker, and then return the new state with the result
so that it can be stored and passed along with the next task. This way, each
task of the sequence can still be transparently sent to different devices.

The sequence diagram in Figure 2 illustrates the LWW call lifecycle and how
the components inside the LWW pool communicate during local and remote
execution. The assumption is that device1 and device2 have been paired and
workers w1 and w2 have been created on both devices. A task addressed to
w2 is submitted by invoking the method callWorker. The pool will determine
where the task will be executed by invoking the internal _where function of
the the policy component. In the first case the policy component chooses to
execute the task locally. This results in the local call to the corresponding LWW.
The response is asynchronously computed within the worker and passed as a
parameter in the fulfilled promise. Internally, workers use the standard HTML5
postMessage/onMessage API to exchange their input and output data with the
LWW pool. This way, from the perspective of the caller, executing a task locally
or remotely is indistinguishable.

In the diagram the caller again invokes the callWorker method and even-
tually receives a response inside the fulfilled promise, however inside the pool
the process changes whenever the policy component chooses to execute the task
remotely. In this case the pool first sends a message to the remote device, the
remote pool executes the task on a remote LWW and eventually it will send back
a response. If no response is received within a given developer-configurable time-
out, the LWW pool will attempt to find another device and resubmit the task.
If eventually no more remote devices can be found, the task will be executed
locally.

3.3 Liquid.js Prototype

We built a Liquid Web Workers prototype within the Liquid.js for Polymer [5]
framework. Liquid.js is a Web framework for building decentralized, component-
based, liquid Web applications that can be deployed across multiple heteroge-
neous devices. Applications developed with Liquid.js are built using the Web
Components standard, which provides the necessary abstractions to structure
the application user interface and its state into units that can be independently
deployed across multiple devices.

Figure 3 illustrates a simplified component view of both Liquid.js extended
with the LWW pool. The Liquid WebWorker pool is managed by the frame-
work itself hidden behind its own API [6]. The framework manages inter-device
communication through a separated component called Liquid Peer Connection,
which automatically manages and sends messages through peer-to-peer connec-
tions using the WebRTC protocol. Developers who wish to use the LWW com-
putation offload feature need to invoke the callWorker method exposed by the
Liquid.js API. The Liquid.js framework also allows to automatically create work-
ers on other machines whenever the updatePairedDevice method is called, which
guarantees that a copy of each LWW can be found on all paired devices.

8



Liquid WebWorker Pool

LWW #2
LWW #3

LWW #1
Liquid.js API

Liquid Peer Connection 
Handler

Liquid
C

om
ponent

Device 1

Liquid WebWorker Pool

LWW #2
LWW #1

Liquid.js API

Liquid Peer Connection 
Handler Liquid

C
om

ponent

Device 2

Task:
- worker #x

- inputs

Fig. 3: Component view of the implementation of Liquid WebWorkers inside the
Liquid.js for Polymer framework.

4 Evaluation

In order to study the feasibility and performance of the Liquid WebWorker
concept, in this Section we present the results of an evaluation of the Liquid.js
prototype implementation.

4.1 Test Scenario: Offloading Image Processing Tasks

The Liquid.js framework comes with various demo applications, including the
liquid camera. This allows users to take pictures with their devices’ Webcams,
share pictures and display them across multiple devices, and apply a variety
of image transformation filters. Applying filters to the images displayed on one
device will immediately show the result on all copies of the image found across
all connected devices. Since filtering images is a CPU-intensive operation, we
have migrated the existing implementation based on Web workers to use the
LWW pool. Figure 4 and 5 show the results of our preliminary experiments
using LWWs.

4.2 Testbed Configuration

All experiments described hereafter are ran using different machines connected
to the same private WiFi 5GHz network with the following hardware and OS
specification: – Laptop (L): MacBook Pro (Retina, 15-inch, Mid 2014), 2.2 GHz
Intel Core i7, macOS High Sierra Version 10.13.2, Chrome Version 64.0; – Tablet
(T): Samsung Galaxy Tab A (2016), Octa Core 1.6 GHz, Android Version 7.0,
Chrome Version 64.0; – Phone (P): Samsung J5 (2015), Quad Core 1.2 GHz,
Android Version 5.1.1, Chrome Version 62.0.

9



(a) Edge Detection Workload

(b) Improved Edge Detection Workload

Fig. 4: Average Processing and Communication Time of the Liquid WebWorkers
offloaded across different pairs of devices (L Laptop, T, Tablet, P Phone)

In this study we show the performance for all shown configurations given
the three different kind of devices. The policy loaded inside the LWW takes the
decision not to or to offload the execution to other devices based on a prede-

10



94 kb 198 kb

0

500

1000

1500

L T P L>T T>L L>P P>L T>P P>T L T P L>T T>L L>P P>L T>P P>T

To
ta

l P
ro

ce
ss

 E
xe

cu
tii

on
 T

im
e 

[m
s]

(a) Edge Detection Workload

94 kb 198 kb

0

500

1000

1500

2000

L T P L>T T>L L>P P>L T>P P>T L T P L>T T>L L>P P>L T>P P>T

To
ta

l P
ro

ce
ss

 E
xe

cu
tii

on
 T

im
e 

[m
s]

(b) Improved Edge Detection Workload

Fig. 5: Boxplots of the Total Process Execution Time of the LWW offloaded
across different pairs of devices (L Laptop, T, Tablet, P Phone)

fined static configuration used to explore all possible device combinations in the
experiments.

4.3 Workloads

In this evaluation we run two different experiments by applying various filters to
the same picture. In the first "Edge Detection" experiment (Figure 4b) we apply
to the image the Sobel operator filter (using a 3x3 convolution matrix kernel).In
the second "Improved Edge Detection" experiment (Figure 4b) we improve the
result of the edge detection by chaining multiple filters. Compared to the first,
the second experiment puts a larger workload on the device CPUs as they run
multiple filters with larger kernels. The chained filters are: 1. a sharpening filter

11



implemented by using a convolution filter with a 5x5 kernel;2. an embossing filter
using a 5x5 kernel; 3. the Sobel operator filter using a 5x5 kernel.

For each experiment we apply the filter on two different image resolutions,
consequently changing the size of the message exchanged between devices. Both
versions of the image are encoded using the PNG format and are transferred
with messages of size 94196 bytes and 198560 bytes.

4.4 Measurements

Each experiment was ran 10 times, during each trial we applied the filters
25 times for both image sizes for all different device offloading combinations.
Between two trials we reset the execution environment by restarting the Web
browser on all devices. The values of the execution time shown in Figure 4 are
computed as the average over the 10 trials.

4.5 Results

The charts show the average time spent by the devices in order to execute a
submitted task. Using three different colors we highlight the time elapsed during
(see Equation 1): the worker processing time in blue, the remote (or cross-device)

communication time in green, and the local (or intra-device) communication time

in red. The worker time represents the time spent running the LWW script to
process the submitted task; the remote communication time is spent during the
transfer of the submitted task and its output result between the local and remote
devices; the local communication time includes the time for sending and receiving
back the task from the main thread to the LWW, the time employed for message
marshalling and unmarshalling, the time spent idle in a message queue, and the
overhead of the logging needed to gather performance data for this evaluation.

Process

total

t

= PromisePreProcess

t

+ Send

offload

t

+MessageQueue

t

+

WorkerExecution

t

+Marshalling

t

+ Send

response

t

+ PromisePostProcess

t

(1)

Edge Detection case (Figure 4a and 5a): the fastest execution happens on
the laptop (L) without any offloading. The laptop finishes the process on average
about five times faster than the tablet (T), and nine times faster than the phone
(P) for both image sizes. It is interesting to see that every time the laptop was
configured to offload work to any other device (L!T, and L!P), the overall
execution took longer due to the slower worker processing time of the remote
devices and the additional remote communication time required to transfer the
task and the response between the devices; the same behavior can be observed
when the tablet offloads its work to the phone (T!P).

In the T!L and P!L offloading configurations, the overall execution is
faster when compared with the local execution without offloading cases. The

12



elapsed worker time of the laptop is so low compared to the one of the tablet
and the phone that, despite the penalty due to the remote communication time,
the total execution time remains lower. T!L is on average 81% faster than T
and P!L is on average 64% faster than P. Despite the expectation that also the
configuration P!T would execute faster than P, this was not observed because
of the communication time. So there were no benefits in offloading the task from
the phone to the tablet, in fact in this case the performance worsened.

As a side note, we observed that the WiFi data transmission performance
depends on the device, with the phone’s available bandwidth being smaller than
on the other devices. This behavior is evident when comparing all offloading
configurations where the phone is involved with all other configurations. In par-
ticular the communication time between the phone and the tablet is double than
the time between the laptop and the tablet. This could also be caused by the
physical proximity of the devices during the tests which may have led to some
interference as indicated by changes of the WiFi signal strength on the devices.
We did not attempt to shield the devices to reduce measurement noise because
our goal was to reproduce real-world usage conditions.

From this experiment we can conclude that it is possible to benefit from using
LWWs and thus it is possible to lower the total processing time by offloading
tasks to nearby devices. However, this can be achieved only when the extra
communication overhead is smaller than the gained processing time due to the
faster remote CPU.

Improved Edge Detection case (Figure 4b and 5b): in this experiment
we stress the devices more as we increase the workload exerted on the LWWs.
On average the worker processing time for this experiment is 248% longer on
all devices when compared to the previous experiment. We can observe that
the local communication time is unaffected by the experiment, but the average
remote communication time slightly changes due to the previously discussed
noisy WiFi channel.

Offloading computations to the phone never registers lower process execution
times (L!P and T!P), which is the conclusion we observed before.

Particularly interesting in the second experiment are the values registered in
configuration P!T compared to values registered in P. In this case we observe
that again on average P is slightly faster (82-85ms difference) than P!T. Still,
if we examine the trend by including the data from the experiment before we
can see that the longer the worker time, the better it is to offload workload
from P to T. Eventually, for heavy workloads, offloading to a tablet would be
better than executing the tasks on the phone, because the remote communication

time remains mostly constant for the same image size while the worker time

constitutes the dominant factor.

13



5 Conclusions

In this paper we presented the design of Liquid WebWorkers and their imple-
mentation within the Liquid.js framework. LWWs are suited for building liquid
application featuring heavy computations dynamically redeployed across mul-
tiple, partially-idle heterogeneous devices. The goal is to avoid slowing down
the overall performance of the application because of some slow, bottleneck de-
vice. The preliminary evaluation of the Liquid WebWorkers concept and our
prototype implementation shows that there is the opportunity for increasing the
overall performance of a liquid Web applications when LWW are migrated from
slow to more powerful devices.

6 Future Work

6.1 Policy Rules

We plan to make the Liquid WebWorkers pool able of automatically deciding
where to execute tasks. This could be achieved by feeding the policy component
with predefined rules selected by the developers of the liquid Web application
to, e.g., trade-off energy consumption vs. performance.

In this paper we demonstrated how such rules could impact the overall execu-
tion time. These policy rules need to be further investigated in order to determine
how to provide them with enough information about the state of the various de-
vices. For example: battery levels [13] would use the current state of charge to
prioritize plugged-in devices over battery-supported devices, or privacy con-
straints could prevent the usage of public or shared devices and limit which
devices would receive privacy-sensitive user data only shared among user-owned
devices.

During the experiments, the decision of where to offload the computation was
precomputed to test all possible device type combinations. The obtained results
can help to make the decision automatic and adaptive, capable of taking the right
decision with the goal to reduce the overall execution time. Here we propose two
policy rules derived by the behavior observed during the experiments.

Device type as initial priority - Some device are better than others and we
can initially have some expectation on the performance of a device by knowing
its device type in advance, such as Desktop, Laptop, Tablet, Phone. Our policy
rule would have some expectation on the device type, for example we expect
that a desktop computer would be faster than a smartphone, however this is
only an heuristic. In general, each device (and Web browser) performance would
need to be benchmarked. Unfortunately, detailed hardware specifications are not
directly available from a Web browser, making it difficult to determine accurately
its performance a priori.

14



Lower Communication Time - the policy component should consider the
exchanged data size, the available bandwidth (both upload and download
because it could be asymmetric) and the latency between the devices into the
decision. This rule tries to optimize Equation 2 where the communication time
is defined as written in Equation 3.

Communication

t

+ Computation

remote

t

 Computation

local

t

(2)

Communication

t

= (Data

out

size

⇤Bandwidth

upload

)+

(Data

in

size

⇤Bandwidth

download

) + (Latency
t

⇤ 2)
(3)

While the Data

in

size

and the network parameters (Bandwidth and Latency)
can be measured before taking the offloading decision, the size of the result and
the computation time may only be estimated or learned based on the character-
istics of the LWW script and the history of its past executions.

6.2 Stateful LWWs

The current LWW programming model simplifies the HTML5 WebWorker model
to run stateless computations, where each task can be independently re-assigned
to a different device. We plan to extend LWWs to support stateful workers
exchanging an arbitrary number of messages during arbitrary computations,
making the transparent migration of such workers more challenging. This can
be solved by reusing existing Liquid storage facilities of Liquid.js that have been
originally designed to migrate and synchronize stateful Web components.

Acknowledgements This work is partially supported by the SNF with the
"Fundamentals of Parallel Programming for PaaS Clouds" project (Nr. 153560).

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
networks 54(15), 2787–2805 (2010)

2. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proc. of the first edition of the MCC workshop on Mobile
cloud computing. pp. 13–16. ACM (2012)

3. Cushing, R., Putra, G.H.H., Koulouzis, S., Belloum, A., Bubak, M., De Laat, C.:
Distributed computing on an ensemble of browsers. IEEE Internet Computing
17(5), 54–61 (2013)

4. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless communications and mobile
computing 13(18), 1587–1611 (2013)

5. Gallidabino, A., Pautasso, C.: Deploying stateful web components on multiple
devices with liquid.js for Polymer. In: Proc. of CBSE. pp. 85–90. IEEE (2016)

15



6. Gallidabino, A., Pautasso, C.: The liquid user experience API. In: Proc. of the
27th International Conference on the World Wide Web (WWW) (2018)

7. Gallidabino, A., Pautasso, C., Mikkonen, T., Systa, K., Voutilainen, J.P., Taival-
saari, A.: Architecting liquid software. Journal of Web Engineering 16(5&6), 433–
470 (September 2017)

8. Google: The new multi-screen world: Understanding cross-platform consumer
behavior. http://services.google.com/fh/files/misc/multiscreenworld_
final.pdf (2012)

9. Google: The connected consumer. http://www.google.com.sg/publicdata/
explore?ds=dg8d1eetcqsb1_ (2015)

10. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the internet of things to the
web of things: Resource-oriented architecture and best practices. In: Uckelmann,
D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp.
97–129. Springer (2011)

11. Hartman, J., Manber, U., Peterson, L., Proebsting, T.: Liquid software: A new
paradigm for networked systems. Tech. Rep. 96-11, University of Arizona (1996)

12. Hirsch, M., Rodríguez, J.M., Mateos, C., Zunino, A.: A two-phase energy-aware
scheduling approach for cpu-intensive jobs in mobile grids. Journal of Grid Com-
puting 15(1), 55–80 (2017)

13. Hirsch, M., Rodriguez, J.M., Zunino, A., Mateos, C.: Battery-aware centralized
schedulers for cpu-bound jobs in mobile grids. Pervasive and Mobile Computing
29, 73–94 (2016)

14. Loke, S.W., Napier, K., Alali, A., Fernando, N., Rahayu, W.: Mobile computations
with surrounding devices: Proximity sensing and multilayered work stealing. ACM
Transactions on Embedded Computing Systems (TECS) 14(2), 22 (2015)

15. Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: Focusing
on mobile users at the edge. arXiv preprint arXiv:1502.01815 (2015)

16. Poslad, S.: Ubiquitous computing: smart devices, environments and interactions.
John Wiley & Sons (2011)

17. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017), https://doi.org/10.1109/MC.2017.9

18. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

19. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: Software
challenges in the IoT era. IEEE Software 34(1), 72–80 (Jan/Feb 2017)

20. Taivalsaari, A., Mikkonen, T., Systa, K.: Liquid software manifesto: The era of
multiple device ownership and its implications for software architecture. In: 38th
Computer Software and Applications Conference (COMPSAC). pp. 338–343 (2014)

21. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska,
M., Borriello, G.: Building the internet of things using rfid: the rfid ecosystem
experience. IEEE Internet computing 13(3) (2009)

16

http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
https://doi.org/10.1109/MC.2017.9

	Decentralized Computation Offloading on the Edge with Liquid WebWorkers

