
A RESTful API

for Controlling Dynamic Streaming Topologies

Masiar Babazadeh

Faculty of Informatics, University of Lugano,

Switzerland

masiar.babazadeh@usi.ch

Cesare Pautasso

Faculty of Informatics, University of Lugano,

Switzerland

c.pautasso@ieee.org

ABSTRACT
Streaming applications have become more and more dynamic and
heterogeneous thanks to new technologies which enable platforms
like microcontrollers and Web browsers to be able to host part of a
streaming topology. A dynamic heterogeneous streaming applica-
tion should support load balancing and fault tolerance while being
capable of adapting and rearranging topologies to user needs at
runtime. In this paper we present a REST API to control dynamic
heterogeneous streaming applications. By means of resources, their
uniform interface and hypermedia we show how it is possible to
monitor, change and adapt the deployment configuration of a stream-
ing topology at runtime.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures—Patterns (pipeline)

Keywords
RESTful API, Stream, Framework

1. INTRODUCTION AND MOTIVATION
Stream processing frameworks allow to build topologies to per-

form computations over infinite streams of data. These topologies
can be distributed to run across multiple hosts and, with modern
frameworks, can also dynamically change their structure as well
as adapt the deployment configuration to make elastic use of the
available resources. Most existing streaming frameworks make
use of procedure calls [18] (remotely across the network or local
inter-process calls) to manage the topology execution environment,
monitor the behavior of the topology and dynamically modify/adapt
its configuration.

In our work we are interested to study how to run stream pro-
cessing topologies on the Web. We are building the Web Liquid
Streams (WLS) framework for connecting multiple processing op-
erators written in JavaScript into topologies that can be deployed
both across multiple Web servers and Web browsers. In this paper
we describe the architecture of Web Liquid Streams, particularly
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focusing on its RESTful design for managing and controlling the
streaming topology.

The WLS framework takes advantage of modern capabilities of
the HTML5 Web platform, which has enhanced the communication
and interaction capabilities of Web browsers beyond the basic HTTP
protocol. In particular, we use WebRTC [5] to stream data directly
between Web browsers and WebSockets to stream data between
browsers and servers. Whereas these low-level protocols clearly
break the client/server and statelessness constraints of REST, our
goal is to take advantage of the properties of REST to scale the size
of the infrastructure on which the topology can be deployed, hence
the need to introduce an API for the runtime system that follows the
REST architectural style.

The main features of the RESTful API involve:
1. Resource identifiers to address the basic components of stream-

ing topologies and their deployment and runtime configuration;
2. The Uniform interface applied to inspect, monitor and dynam-

ically change the streaming topology;
3. Standardized representations: we use JavaScript for program-

ming the processing operators and JSON for describing the topology.
4. Code on Demand: the streaming topology description ref-

erences the scripts to be executed as part of its operators, which
are then dynamically downloaded to be executed by the available
execution resources.

5. Loose coupling between the main system components: the
Peers, which consume each other’s RESTful interface, and the Con-
trollers which discover the state of each Peer through hypermedia.

6. Human-redable interface: Web browsers can navigate through
the topology, inspect its execution state and even participate in the
actual execution of some of its operators.

The contribution of this paper is twofold. First, it explores how
to use the REST architectural style to design a management and
control API for dynamic streaming topologies, which historically
have always been configured using RPC. Second, it presents in detail
the RESTful API design for the WLS framework for distributed
stream processing over heterogeneous, Web-friendly devices.

In the rest of this paper we first introduce Web Liquid Streams in
more detail (Section 2). Then we demonstrate how REST fits the
needs of a dynamic heterogeneous streaming application (Section 3)
and bring use cases (Section 4) and an example (Section 5). Finally
we show related works (Section 6) and draw some conclusions
(Section 7).

2. WEB LIQUID STREAMS
Web Liquid Streams (WLS) is a framework for building topolo-

gies of data streams that can run on both Web browsers and Web
servers, which can be deployed on all kinds of hardware devices
(from pervasive microcontrollers such as Arduino/Beaglebone, em-
bedded PCs like Raspberry Pi or Tessel, as well as mobile smart-
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phones and tablets). Given the heterogeneity of the targeted de-
ployment environment, we chose JavaScript as the language for
developing the processing operators and Node.JS [1] as the basic
building block for the WLS runtime.

In streaming topologies, data flows from producers (e.g., sensors)
to consumers (visualizations on mobile devices). In between, there
can be all kinds of intermediate processing, filtering, data aggre-
gation steps. Each stage of the streaming topology is executed by
one or more independent worker, which can be elastically replicated
as necessary. The topology, its deployment configuration, and the
available execution resources (i.e., Peers) are all managed using the
RESTful API described in this paper.

More in detail, behind the API, we use a hierarchical process
structure, which is replicated on each host running WLS. The top-
level element is the Peer process, which publishes the REST API,
and controls the execution of its children processes through local
IPCs. In REST terms, the Peer acts as a gateway, which maps the
external HTTP protocol into a different protocol used to interact with
local processes. Multiple Peers can be started on different hosts so
that the processing capacity of the topology can grow dynamically.

The Peer can spawn one or more Operator, the building block of
a topology. Operators are associated with a specific topology pro-
cessing stage and with the corresponding script (in JavaScript) to be
invoked for every stream element received. The actual execution of
the script is performed by the Worker processes (replicas/instances
of Operators), which are directly connected to upstream and down-
stream Workers using the appropriate protocol. To add parallelism
within a particular Operator of the topology, multiple Workers for
the same Operator can be dynamically started.

Each Peer also runs a Controller process that is in charge to check
the integrity of the other Peers connected. If a Peer is faulty or not
responsive, the Controller restarts the lost Operators and Workers
on another available Peer by creating new Operators and redirecting
the traffic there. If some Peers leave the topology, the Controller is
in charge of reorganizing its deployment configuration accordingly.
Moreover, the Controller is also in charge of dealing with faults and
load balacing at Worker level: if an Operator becomes a bottleneck,
the Controller will increase the parallelism by adding more Workers;
if a Worker is faulty or dead, the Controller is in charge of restarting
it.

Figure 1: WLS process trees for two example deployments on
a Web server host and on a Web browser

Figure 1 shows the processes running as part of a Peer. There
are two Peers, on which a topology of three Operators has been
deployed. Each Operator runs one or more Workers. Some Opera-
tors allow requests from Web Browsers and can outsource Workers
on them. Security on Web browsers is achieved by sandboxing the
execution environment.

Users can feed a topology referring to a set of scripts (written
in JavaScript) to a Peer which will deploy them on the available
resources (all known Peers). A topology is a description of the
structure of the data stream that has to be run, in the form of a graph.
The scripts instead describe how the stream elements should be
processed at each node of the graph.

Figure 2: Logical view of the topology
Figure 2 shows the logical topology, abstracting its physical de-

ployment shown above in Figure 1. The graph has Operators at the
vertices, which spawn Workers to execute the scripts. Workers in O1
produce a stream of data which is forwarded to O2, whose Workers
execute the script and send the result downstream to O3. The way
data is shared among replicated workers is specified as part of the
bindings of the topology. It can take the form of round robin or
broadcast. With round robin, the data produced by an Operator is
partitioned among the downstream workers running the following
Node. This allows to scale-out processing of expensive Operators,
since more workers can share its workload. With broadcast, a copy
of the data produced by an Operator is sent to all downstream Work-
ers associated with the following Operator. This is typically used
with Operators that play the role of data consumer, for which multi-
ple instances (e.g., on multiple browsers) can be dynamically started
to observe the results of the streaming computation.

Overall, the approach of WLS is considered "liquid" [6] because
as a fluid adapts its shape to the one of its container, so WLS will
adapt the stream (liquid) to flow across the available hosts (pipes).
As the pressure of the liquid increases (increased stream data rate),
WLS will also adapt the shape of the pipe to avoid bottlenecks
(elastic resource allocation to critical topology stages) so that the
stream can fill each execution host according to its capacity.

3. RESTFUL API DESIGN
This section introduces the design for a REST API for controlling

dynamic heterogeneous streaming topologies. The implementation
of a REST API for WLS comes naturally as each Peer process
is a Node.JS server which is able to serve HTTP requests. First
we introduce the published resources, then we show how HTTP
methods are used to access and modify their state and finally we
show their representation media types.

3.1 Resources
The resources exposed by the API represent the most important

concepts used to manage the deployment and the execution of a
streaming topology in WLS. In the following we introduce the URI
template and the informal semantics and hypermedia relationships
between the resources. The hypermedia graph of the API is also
summarized in Figure 3. The Figure shows the hyperlink connec-
tions between representations returned by performing GET requests
on the corresponding resource.
/

The Peer root resource provides hyperlinks to the other top-level
resources so that hypermedia can be used to dynamically discover
what feature each of the WLS peer can offer.
/peers

This resource represents the collection of Peers known by a Peer
and allows Peers to discover and refer to each other.
/peers/:pid

This resource represents the information about a Peer that is known



Figure 3: Hypermedia navigation map, showing the resources
that can be discovered from each GET request.

by the Peer from which it is retrieved. It also includes the hyperlink
to the root of the REST API of the peer.
/operators

The Operator resource collection represents the set of all Operators
(from all topologies) deployed on the Peer.
/topologies

The topology resource collection represents the set of topologies
known by the Peer.
/topologies/:tid

A specific topology represents how Operators are interconnected
to form a data stream. It is used to deploy a new topology into
the system as well as to dynamically modify it and control its state
of execution. A topology representation contains hyperlinks to its
Operators, which are addressed as sub-resources for namespacing
purposes.
/topologies/:tid/operators

The Operators collection of a topology.
/topologies/:tid/operators/:oid

Each Operator resource represents the individual processing step
within a topology and contains the actual script to be executed. It
also contains hyperlinks to connected Operators that allow to follow
the topology.
/topologies/:tid/operators/:oid/workers

Each Operator resource allows to manage its worker collection (start,
stop, migrate workers).
/topologies/:tid/operators/:oid/workers/:wid

The worker resource represents the execution state of an individ-
ual worker thread and allows the Controller to retrieve monitoring
information about its performance.

3.2 Uniform Interface
For each of the previously introduced resources, we specify the

semantics of applying one of the HTTP methods to it. If a method is
not mentioned, a default 405 Method not allowed response
can be expected.

3.2.1 Root
GET /

Retrieves a list of hyperlinks to the contents of the Peer. There
are three main links: /peers, /topologies, /operators.
Additionally, some summary statistics about the peer performance
are included.

3.2.2 Resource Management and Peer Discovery
GET /peers

Retrieves the collection of Peers known to the Peer. The collection
includes both relative hyperlinks to the local Peer resource identifiers
(/peers/:pid) as well as to the absolute hyperlinks to the REST
API of the known Peers (http://ip:port/). Finding a Peer
listed in the collection does not mean that the Peer has established

an actual connection to it for the purpose of streaming data, but only
that the Peer is known. If a connection has been established, the list
contains the last CPU usage value seen on that Peer.
POST /peers

A POST request on the /peers path with a payload referencing
the address (IP:port) of the Peer informs the receiver that a new
Peer exists on the network. The receiver stores the Peer data in the
collection and returns the updated list of known Peers.
GET /peers/:pid

Retrieves the state of the Peer and a hyperlink to its REST API.
DELETE /peers/:pid

Used to remove a Peer with id pid from the list of known Peers.
DELETE /peers/:IP:port

Used to remove the Peer with address IP:port from the list of
known Peers.

3.2.3 Topology Management
GET /topologies

Retrieves the list of topologies started from this Peer with hyperlinks
to their resource identifier in the form of /topologies/:tid.
GET /topologies/:tid

Retrieves the current execution state of the topology with id tid.
The result shows the topology specifying which Operators are run-
ning where and which script are they running. Hyperlinks to each
Operator are also included.
DELETE /topologies/:tid

This method shuts down a topology.
POST /topologies

This method is used to create a new topology. The payload repre-
sents the structure of the topology to be implemented.
PUT /topologies/:tid

This method is used to create a new topology and associate it with
the given identifier. The payload represents the the structure of the
topology to be implemented.

3.2.4 Operator Configuration
GET /operators

Retrieves the list of all Operators deployed on this Peer with hyper-
links to their resource identifier.
GET /topologies/:tid/operators

Retrieves the list of Operators running on this Peer for topology
with id tid.
GET /topologies/:tid/operators/:oid

Retrieves the representation of the Operator with id :oid. The
representation includes the list of Workers running (with hyperlinks
to contact them), the script that they are running, the connections
they have, as well as a hyperlink back to the topology it is part of
and information about the overall performance (for example, the
request/response rate or the CPU usage aggregated across all of its
workers).
PUT /topologies/:tid/operators/:oid

Performing the request with a payload carrying a script and the
bindings creates an Operator named oid for the topology tid. This
operation is not supported by POST as the name of the Operator has
to be know a priori in order to perform the bindings described in the
topology. Workers created in this Operator will run the script and
performs the connections specified in the bindings. If the Operator
identifier already exists, it is updated with the new information.
This requires to stop the workers, update the script and the stream
connections and then start the workers with the new script.
PATCH /topologies/:tid/operators/:oid/script

This request with a payload linking a new script updates at runtime



the current script Workers are running with a new version of it,
without modifying the connections they have.
PATCH /topologies/:tid/operators/:oid/bindings

This request with a payload referencing new connections updates
the bindings. In this case the overall topology is modified at runtime.
DELETE /topologies/:tid/operators/:oid

Stops the Operator with id oid.

3.2.5 Worker Configuration
POST /topologies/:tid/operators/:oid/workers

The request creates a new worker, the payload is not necessary as
the Operator already has all the information for its creation (that is,
script to be run and connections to make).
GET /topologies/:tid/operators/:oid/workers

Retrieves the list of Workers running on the Operator with id oid.
The list contains hyperlinks to contact every Worker.
GET

/topologies/:tid/operators/:oid/workers/:wid
Retrieves the status of the Worker with id wid. The result includes
uptime, and information about the Worker performance (for exam-
ple, request/response ratio, throughput).
DELETE

/topologies/:tid/operators/:oid/workers/:wid
Deletes the Worker with id wid from the Operator by stopping it
and removing its connections and deleting it.
POST /topologies/:tid/operators/:oid/browsers

Used to create a Worker for Operator with id oid on a browser.
Returns a Web page and a script to be run. It only works if browser
flag is specified in the topology description.

3.3 Representations

3.3.1 Operators
A collection of Operators is either returned when performing a

GET request on /operators or on
/topologies/example/operators.

{
"operators" : [

{
"topology" : "example",
"id" : "a",
"workers" : [...],
"CPU usage" : "50%",
"href" : "/topologies/example/

operators/a",
"peer" : "http://IP:port/",
"replicas" : [

"http://IP2:port2/topologies/example/
operators/a"

]
}

]
}

Listing 1: Example collection of Operators

Listing 1 shows an example collection of one Operator. The JSON
format is custom, as it is less verbose. Through content negotiation
it is possible to retreive different kind of representations. The array
contains objects representing the Operators, defining the id of the
Operator, the hyperlink to contact it and the name of the topology it
is part of. A link back to the Peer on which the Operator is deployed
is also provided. This allows to conveniently aggregate the Operator
configuration of multiple Peers. Moreover, if the Operator had to be
replicated on other Peers, due to overloading, an array with direct
hyperlinks to the replicas is provided.

3.3.2 Stream Topology
Listing 2 shows the topology schema that describes the JSON to

be sent to the Peer when creating a new topology through a PUT
/topologies/:tid request. The Operator ids may be given by
the user and are used to create the corresponding resource identifiers.

The operators key contains an array of objects describing
which Operator runs which script and the number of Workers that
should be started in the initial deployment configuration of the
Operator. If no number of Workers is provided, the Operator will
be started with one Worker by default. The browser key specifies
whether browsers can connect to this Operator and become part of
the topology, while the max-workers and min-workers keys
define the maximum or minimum amount of Workers that can be run
for that Operator. By default, the minimum is one and the maximum
depends on the available execution resources.

The value of the bindings key instead contains an array of
objects describing the bindings, that is, the flow of the data stream
between Operators. The objects also specify the algorithm used
to send the data to multiple workers. WLS currently offers Round
Robin and Broadcast as possible routing algorithms.

{
"title": "Topology Schema",
"type": "object",
"properties": {

"id": {
"type": "string"

},
"operators": {
"type": "array",
"minItems" : 1,
"items" : {

"type" : "object",
"properties" : {
"id" : { "type" : "string" },

"workers" : { "type" : "integer" },
"browser" : { "type" : "boolean" },

"max-workers" : { "type" : "integer" },
"min-workers" : { "type" : "integer" }

},
}

},
"bindings": {
"type": "array",
"minItems" : 0,
"items" : {

"type" : "object",
"properties" : {
"from" : { "type" : "string" },

"to" : { "type" : "string" },
"type" : { "type" : "string" },

}
}

}
}

}

Listing 2: Stream topology schema

3.3.3 Operator Configuration
When executing a PATCH request to patch an Operator, a JSON

payload is sent containing the description of the change to apply.
There are two kinds of patches: to modify which script is asso-
ciated with the Operator on the .../script sub-resource or a
modification of the bindings (that is, the topology) at runtime on
.../bindings.



{
"bindings" : {

"from" : "/topologies/example/operators/
c",

"to" : "/topologies/example/operators/a"
}

}

Listing 3: Updating the bindings of Operator b at runtime

Listing 3 shows the JSON sent to update the bindings of Operator
b, reversing the flow of the topology. The object contains a from
key and a to key whose values are different from the previous
binding of the Workers. It is mandatory to define at least one of the
two in order to update a binding (the one not defined keeps the old
binding). If the Operator is supposed to become the final stage of
the topology, then it is sufficient to leave empty the string in the to
key. Likewise, viceversa for Operators that should be moved at the
beginning of the topology (empty from). A similar JSON needs to
be sent to the other Operators a and c to update their connections
as well.

3.3.4 Worker state monitoring
Listing 4 shows the result of a GET request on the

/topologies/example/operators/a/workers/0 path.
It contains the id of the Worker, information about how to contact
it again and a hyperlink to its Operator. Performance information
includes how long has it been up, the total number of messages that
have been processed since it was started, as well as its request/re-
sponse ratio for the last second. The latter is very important for the
Controller in order to detect whether the Operator is a bottleneck
in the topology (incoming request messages / outgoing response
messages > 1).

{
"worker" :

{
"id" : "0",
"href" : "/topologies/example/

operators/a/workers/0",
"operator" : "/topologies/example/

operators/a",
"uptime" : "3600",
"messages" : 42,
"req-res-ratio" : 1.5

}
}

Listing 4: Worker state returned as JSON

4. USE CASES

4.1 New Peer Joins the Network
When a new Peer P joins the network, it will contact another

Peer through a POST request on /peers. The payload of the
request references the address of P. The Peer receiving the request
updates its known Peer list and replies with it to P. The list not only
features the address of known Peers, but also their CPU usage if
known. P then chooses which Peer to contact giving preference
to the most available ones (least CPU usage). This Peers subset is
then contacted through the same interface; the process stops after
enough Peers are contacted. The idea behind this procedure is to
gather a sufficient amount of Peers to run the topologies that will be
deployed on P. Contacting busy Peers (i.e., CPU usage greater than
a fixed threshold) is not worth as they will not have capacity to run
Operators.

4.2 Setting up a Topology
To setup a topology users have to perform a PUT request with a

payload that contains the description of the topology which includes
the links to download the scripts to run for each Operator. The
Peer receiving the topology description fetches the scripts spreads
them on the least used Peers it knows by checking their availabil-
ity. The Peers will receive the setup though a PUT request on
/topologies/example/operators/a with a payload ref-
erencing the script and the connections to be performed. This au-
tomatically starts one Worker that is ready to process the stream.
Users can also specify, in the description, the number of Workers to
be initially started at a specific stage of the topology.

4.3 Browser as a Worker for an Operator
When a Web browser wants to join a topology, it contacts a Peer

through its API it can navigate to discover an Operator of interest us-
ing GET requests. Once it reaches the Operator .../operators/c,
a specific representation is retrieved to display some information
about the purpose of the Operator together with an HTML form.
If the user would like to start processing the Operator using the
browser, the form is submitted through a POST request on
.../operators/c/browsers. P registers the browser as a
Worker for Operator c running for the topology example. The
response contains the script to be run using a WebWorker thread
in the browser. Communication of the data stream with the rest of
the topology is proxied by the Peer through a Websocket channel,
or it is established using a WebRTC data channel if the upstream
or downstream workers are also running in a Web browser. If the
browser is disconnected (e.g., the tab running the worker is closed
by the user) the channel is closed and the worker is stopped. If the
browser flag is not specified in the Operator configuration, the
result of the POST will be a 405.

4.4 Perform New Binding
In the case in which an Operator N needs a new binding (i.e. a

new Operator has been added after N in the topology), the Peer
sends a PATCH request on .../operators/N/bindings to
the Operator with a payload specifying the new connections. The
Operator automatically redirects the traffic of its Workers to the new
Operator with the connections received through the request, thus
changing the topology at runtime.

4.5 Load Balancing
Load balancing is performed by the Controller, which calculates

the efficiency of the Operator by accessing the state of the Workers.
The Controller has to perform a GET request on the list of Workers
.../operators/slow_operator/workers, and with the
data received it is able to compute the efficiency of the Operator
and detect if there is a bottleneck. If that is the case, the Controller
is going to add more Workers by performing a POST request on
.../operators/slow_operator/workers. In the case
in which there is some idle Worker, the Controller may decide
there are too many of them, thus it shuts an appropriate number
down performing a DELETE request on the corresponding worker
resource. In the case of slow Web browsers, the Controller can try
to add Workers on the browser. If the Workers keep being slow, the
controller cannot add more Workers on it.

4.6 Fault Tolerance
We consider three different fault types: a Peer failed, an Operator

failed or a Worker failed.
Peer Failed: Peers that started a topology should be aware of the

status of other Peers that host part of their topologies. This is done by



the Controller which polls their status through a GET request on the
root path. In the case of slow response or no response at all, the Con-
troller may decide to no longer rely on the unresponsive Peer by mov-
ing the computation on another available Peer. It does so by first issu-
ing a PUT request on topologies/example/operators/a
on the available Peer to recreate the Operator, with a payload ref-
erencing the script and the bindings, as well as the last number of
Workers observed. This way the configuration of the Operator in the
failed Peer is reproduced in the new Peer. This has to be repeated for
all operators that have been deployed on the failed Peer. When the
failed Peer becomes reachable once again, the Controller will send a
DELETE request on /topologies/examples/operators/a
to shut the old Operator down.

Operator Failed: The Controller also checks the availability of
Operators running on topologies set up by their Peers. The Con-
troller is interested in the status of the Operators because they may
have crashed even if the Peer is still responding. By inquiring about
their state through a GET request on
/topologies/example/operators/a, it receives the cur-
rent status of the interested Operator. If the Peer replies that the
Operator is unavailable, the Controller issues a DELETE request on
the same Peer using the URI of the failed Operator. This way, the
Operator is removed from the topology. Then, the Controller will
attempt to redeploy and restart the Operator with a PUT request with
a payload referencing the script and the connections peformed by
the dead Operator as well as the same number of Workers. In this
way a new Operator is created to replace the broken one.

Worker Failed: The Controller should also be in charge of check-
ing for failed Workers. If a Worker does not answer the GET request
on topologies/example/operators/a/workers/wid0,
the Controller assumes it failed. If that is the case it will start a new
Worker on the Operator with POST and send a DELETE request to
remove the unresponsive Worker.

4.7 Operator Overloaded
If a Controller wants to add more Workers, but the Peer is reaching

its maximum capacity, the Controller will choose another known
Peer with available capacity and use a PUT request on
/topologies/example/operators/a to deploy a replica
of the Operator. This process offloads the rest of the computation
for that Operator on another Peer. If more Workers are needed,
they will be created on the offloaded Operator replica. The full
Operator and the replicated one will have in their representation the
replica key pointing to each other, thus the replicas can be easily
recognized.

4.8 Migration
The process of migration happens when the physical host of a

Peer P (be it a cluster of machines, a pervasive device or a server) has
to leave the topology. In this case P executes a DELETE request on
all the Peers it knows on the /peers.IP:port path, specifying
its own IP:port in the path. This causes the Peers receiving the
request to check if P is part of their topologies. If that is the case,
then the Controllers will search for an available Peer to substitute
P, and will recreate Operators and Workers there through PUT and
POST requests. Once this is done, they will proceed to remove the
Operators on P and remove P from their list of known Peers. When
no more Operators are running on P, it can safely leave the network.

5. EXAMPLE APPLICATION
Imagine a streaming application that gathers the video streams

from one or more webcams or mobile phone cameras, execute
face recognitions, applies a filter and combines them into a single

Figure 4: The example webcam mashup topology.

view. This can be implemented with WLS using a topology of four
Operators: one dedicated to gathering video feeds, one for face
recognition, one that applies a filter to the snapshots and one which
aggregates the filtered videos into a single frame.

Listing 5 shows a setup JSON file which is sent as a PUT request
to the /topology/webcam-mashup resource. Browsers can
run the first and last Operators of the topology.

Figure 4 shows the topology described in the JSON topology pro-
vided, with Operators identified with the scripts they run. Browsers
are connected to the Operator running producer.js and the one
running consumer.js while server-side Workers are executing
the intermediate fr.js and filter.js Operators. As the face
recognition script is computationally heavy, it may require a ded-
icated server to run. After Peer P received PUT request with a
payload referencing the discussed JSON, it has to find available
Peers to run the Operators and perform PUT requests to star them.
When a browser contacts the Operator running producer.js
through .../producer/browsers, it receives back a script
that will connect the browser to the topology so that the data can
flow through it. In this case, the webcam video will be captured and
sent frame by frame through the data stream to the next Operator.
The fr.js script takes the incoming video frames and executes a
face recognition procedure on the frames. The result of the computa-
tion is the name of the persons in the frame as well as their position;
both are forwarded, with the frame, to the following Operator, which
runs filter.js. The script takes the incoming video frames and
applies some image filter (e.g., negative, B/W, HDR, tilt shift) and
sends the result to the final stage of the topology. In this stage, the
consumer.js aggregates the images received and displays them
on the Web browser with the names of the recognized faces.

We can imagine the work of fr.js becoming heavier as more
producers join the topology. If that is the case, the Controller by per-
forming a GET request on .../face_recognition/workers,
notices that the request/response rate of the Worker is greater than
1, which means the Operator itself is a bottleneck of the topology.
To fix the problem, the Controller adds some Workers by perform-
ing POSTs requests on .../face_recognition/workers.
Workers will be created, increasing the parallelism of the fr.js
stage of the topology, solving the bottleneck issue.

To check the overall status of the topology, the Controller in
P polls data from the Peers and Operators involved in the topol-
ogy. While the fr.js Operator is increasing the number of Work-
ers, it starts exhibiting a faulty behaviour. To cope with that, the
Controller can restart the Operator by sending a PUT request to
/topologies/webcam-mashup/operators/face_recognition



to the same Peer with a payload referencing the script filter.js
and the same connections. Unfortunately, the Controller may notice
that the Peer starts exhibiting a fault behaviour as well. In this case,
the Controller may decide to offload the Operator to another Peer
by sending the same request to it to create the Operator and the
Workers. Once this is done and Workers are connected correctly,
the Controller sends a DELETE request to the previous Operator to
remove it.

After the new Operator has been set up, the dataflow keeps in-
creasing as more users join the topology. The critical stage is
fr.js as it has to perform the most heavy computations. The
Controller can add Workers up to the point in which the Peer is full
and can not handle more, but still the Operator may be slow. To
solve this problem, the Controller will choose an available Peer
among the list of known Peers and perform a PUT request on
.../operators/face_recognition with a payload refer-
encing fr.js and the connections the crowded Operator has. This
creates a new Operator on a different machine which performs the
same computation as the crowded one, easing the computation from
it.
{
"topology" : {

"id" : "webcam-mashup",

"operators" : [
{
"id" : "producer",
"script" : "producer.js",
"browser" : true

},
{
"id" : "face_recognition",
"script" : "fr.js",

},
{
"id" : "filter",
"script" : "filter.js"

},
{
"id" : "consumer",
"script" : "consumer.js",
"browser" : true

}
],

"bindings" : [
{
"from" : "producer",
"to" : "face_recognition",
"type" : "roundrobin"

},
{
"from" : "face_recognition",
"to" : "filter",
"type" : "roundrobin"

},
{
"from" : "filter",
"to" : "consumer",
"type" : "broadcast"

}
],

}
}

Listing 5: Topology for a webcam mashup application
Figure 5 shows a crowded Operator. The Operator itself has many

Workers, and this implies busy CPU for the Peer. The depicted PUT
request offloads part of the computation on another available Peer.

When the entire topology has to be shut down, a single DELETE
request on /topologies/webcam-mashup on Peer P is suffi-
cient to stop it. This operation triggers subsequent DELETE requests
going to the Workers first, and then to the Operators shutting them
down. Finally, when all the Operators are removed, the topology
itself is removed from P.

6. STATE OF THE ART
In the last decade, many streaming frameworks have been pro-

posed. Older systems were static and homogeneous, e.g., Aurora
(2002) [7, 8, 20], StreamIt (2003) [17], CQL (2003) [3] and Sawzall
(2003) [14], These systems did not implement any sort of control
over the structure of the running topology. More recent systems,
like DryadLINQ (2008) [19], Storm (2011) [2] and TimeStream
(2013) [15] instead introduced control over the topology at run-
time [4]. The implementation of control structures for these systems
has been proposed with RPC.

RPC is well suited to execute calls on remote machines, thus
to update something on an Operator, a procedure can be executed
on the Operator in order to update it. The programming model of
RPC makes remote calls appear as local calls. Thus, it hides latency
issues as well as partial failures. For example, if a failure happens,
clients do not know if it happened before their message arrived, or
while the message was processing, or if the error is the result of the
computation. Moreover, in RPC-oriented systems, a new service
interface add a new interface protocol, that is the consumers have
to hard-code knowledge of method names and semantics and must
inherently know which method to call and in which order while
there is no semantic constraints on methods. REST on the other
hand solves many of these problems [18]. HTTP status codes for
example help in assigning blame. The uniform interface constraint
enables visibility into interactions. Moreover, both parts can evolve
independently keeping the interface the same. The representation
format is not method specific as with RPC-oriented approaches, thus
through Media Types we can give standardized representation to
resources.

Another software connector relevant to this paper is the data
stream. There has been some work to extend REST with support
for data streams to deal with different problems, mostly centered
around the notification of resource state changes. In the following
introduce some of these approaches in relationship with our work.

Figure 5: A crowded Peer A contacts another Peer B (top) to
offload his busy Operator and part of the workers there (bot-
tom).



6.1 REST vs. Observer Pattern
In [16] the authors show how to support real-time notifications

with resource oriented architectures using REST observers. The
main idea is to allow Web clients to receive events about state
changes in real time thanks to an observer that monitors the server
and keeps track of changes. The concept can be applied to our
design, especially to handle the relationship between Workers and
Controllers. This way Controllers would not need to POLL Workers
to access their states and take decisions.

6.2 Server-to-server change propagation
Regarding server-to-server change propagation, when it comes

to contact the Controller from the Workers or to exchange status
updates between known Peers, one example is PubSubHubbub [11].
It is a simple server-to-server publish/subscribe protocol based on
webhooks for any web accessible resource. When a server publishes
(or updates) a resource, it also posts an update to a hub which stores
the new changes. When a resource is fetched from the server, it
specifies in the response Headers a link to the hub, thus who fetched
the data can avoid the process of continuous polling by subscribing
to the hub for the interested data. Each time the server publish a
new update, the hub will notify all the subscribers.

Functional Observer REST (FOREST) [9] is another mechanism
that allows Web resources (or objects) that are interested in the state
of other resources to be notified when that state changes, and are
able to update their own state accordingly. The interaction pattern
of the protocol propagating the changes is very similar to PUSH: the
state is set as a Function of its current state (plus other object states
that it observes) and the observation occurs through either PULL or
PUSH of the linked object state.

6.3 Server-to-client change propagation
Server-to-client change propagation can be useful when, in our

case, the Operator has to contact a Worker running on a Web browser.
One broadly adopted solution is Asynchronous JavaScript and XML
(AJAX) [13], which relies on the so-called long-polling technique.
The client opens an AJAX connection with the server, which keeps
it open so that updates on the interested resource are sent as soon
as they happen. Another approach for a server to push data to a
browser are Server-Sent Events [12] which are typically streamed
to the recipients. To be able to receive these events, the client must
know the resource which is emitting the events, or has to become
aware of that resource via a script. WebSocket [10] is another
technology available to enable interactive communication between
a browser and a Web server using HTTP only during handshake. It
enables bi-directional communication and connection management,
clients can send messages to the server and receive response without
polling it. This is the approach currently used in WLS to stream
data from/to workers running on a Web browser.

7. CONCLUSIONS
In this paper we presented a RESTful API for controlling dynamic

heterogeneous streaming systems. The API we propose has been
originally defined for Web Liquid Streams, a novel programming
platform for dynamic heterogeneous streaming systems. We believe
that with the adequate adjustements, the proposed API can fit any
similar system. The main idea is to provide a REST interface that
supports the creation, monitoring and adaptation of stream process-
ing topologies that can be deployed across a heterogeneous set of
execution hosts (including both server-side Web servers and client-
side Web browsers). The resulting RESTful API provides a set
of basic resources for peer management and addressing, topology
definition and dynamic modification, as well as Operator execution

monitoring, allocation, and migration. The API is used to build a
monitoring and control systems to ensure the automatic load balanc-
ing and fault tolerance of the streams.
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