
BPMN for REST

Cesare Pautasso

Faculty of Informatics
University of Lugano (USI)

via Buffi 13, CH-6900 Lugano, Switzerland
http://www.pautasso.info/

c.pautasso@ieee.org

Abstract. The Representational State Transfer (REST) architectural
style has seen substantial growth and adoption for the design of modern
Resource-Oriented Architectures. However, the impact of fundamental
constraints such as stateful resources, stateless interactions, and the uni-
form interface have had only limited uptake and impact in the Business
Process Modeling (BPM) community in general, and in the standardiza-
tion activities revolving around the BPMN notation. In this paper we
propose a simple and minimal extension of the BPMN 2.0 notation to
provide first-class support for the concept of resource. We show several
examples of how the extended notation can be used to externalize the
state of a process as a resource, as well as to describe process-driven
composition of resources.

1 Introduction

Whereas the BPMN notation has been originally developed for modeling com-
plex message-based interactions between process-backed services [3], in the last
few years a novel abstraction has emerged (the resource [5]) which changes some
of the assumptions and gives new constraints for the design of service oriented
architectures [21]. Since business process modeling is one of the foundations for
service reuse and composition [9], it becomes important to study how model-
ing techniques and notations developed for message-based service choreography
and orchestration can also be applied to resource-based (or RESTful [16]) Web
services.

In this paper, we take a look at the general problem of how to combine
Business Process Modeling (BPM) with the REpresentational State Transfer
(REST [5]) architectural style within the specific context of the BPMN nota-
tion [11]. The goal is to study how well the basic modeling concepts and con-
structs of the BPMN notation fit with the resource abstraction and to propose
a lightweight, minimalistic and simple extension to fill the current gap between
BPMN and REST. The proposed extension aims at reusing the existing graphi-
cal elements of BPMN as much as possible in order to avoid to further increase
its visual complexity [10]. With it, it becomes possible to model so-called REST-
ful business processes, which can be both used to orchestrate and compose a set

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 74–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

BPMN for REST 75

of distributed and independent resources, as well as to give a high level represen-
tation of the behaviour of stateful resources [12]. Whereas some BPMN engines1

are starting to feature experimental support for REST, with an HTTP-based
API to deploy, manage and execute processes, current solutions are still exper-
imental and incomplete. Thanks to our approach, modelers can use BPMN for
REST to give an explicit representation of the resources involved in the business
process at design-time and precisely control which process elements should be
published through a RESTful Web service API at run-time.

The rest of this paper is organized as follows. In Section 2 we give some back-
ground on REST and discuss why BPMN as-is should be extended to natively
support RESTful Web services. In Section 3 we give an informal definition of
the proposed extensions to the BPMN, while in Section 4 we show how these
extensions can be used to model three non-trivial RESTful business processes.
Related work is cited in Section 5, before we draw some conclusions in Section
6 and outline some future work in Section 7.

2 Background and Motivation

The REST architectural style [4] was introduced to give a principled design of
the architecture of the World Wide Web and to explain its quality attributes
(loose coupling, scalability, resilience to long-term change, intrinsic interoper-
ability). Whereas most of these quality attributes are also shared by service-
oriented architectures, it is under debate whether the corresponding message-
based, publish-subcribe technologies are fully capable of enabling them [18].
In the past few years, REST (or more precisely its underlying HTTP proto-
col [1,19]) was rediscovered and proposed as an alternative way to approach the
design of such service-oriented architectures, which – according to some – could
be renamed as resource-oriented architectures [16].

More in detail, a RESTful Web service publishes to its clients a number of
resources, which are globally addressable by means of URIs. Clients employ a
stateless communication protocol to access the uniform interface associated with
each resource. The uniform interface defines a standard and common set of verbs
(or methods) which can be performed on a resource. Resources are dynamically
discovered by means of decentralized referral and can have multiple representa-
tions, which can be negotiated by clients. These three basic constraints (resource
identification, uniform interface and multiple representations) are usually visu-
alized as the “REST triangle”, which we use (Figure 1) as an inspiration for the
resource icon used in the BPMN for REST extension.

Due to the emphasis placed on the reliable transfer of state between clients and
resources, RESTful services significantly differs from the basic service abstrac-
tion supported by WS-* [6,20]. For example, the WS-Resource Framework [7])
provides an additional layer of complexity by extending the SOAP protocol to
build stateful services. While it borrows the notion of resources from REST, it

1 http://www.activiti.org/userguide/index.html#N12156

http://www.activiti.org/userguide/index.html#N12156

76 C. Pautasso

R

Verbs
(Fixed, Uniform Interface)

Representations
(Multiple, Negotiable)

Resources
(Multiple, Globally Addressable)

Fig. 1. The REST triangle and the Resource symbol

fails to provide a simple solution for the corresponding notions of uniform inter-
face and global addressability of resources. Thus, it is still remains a challenge
to completely wrap the resource abstraction within a traditional service-based
interface [15,14]. As a consequence, there is some mismatch between the REST
architectural style (originally developed for the design of distributed and de-
centralized hypermedia systems) and SOA technologies (such as BPEL/BPMN)
addressing the needs for describing distributed systems built out of the integra-
tion and reuse of interoperable services.

In this paper we are concerned with one particular mismatch, which concerns
the reuse of services by means of process-based composition, orchestration and
choreography. This was originally achieved with the BPEL standard [13] and
today with the latest version of the BPMN standard. These languages and the
corresponding notations make a strong assumption about the set of composition
techniques [2] that are available to compose services. For example, the languages
provide specific constructs for message-based interaction (e.g., send/receive mes-
sage icons which can be associated with tasks and events, as well as message-flow
edges which literally visualize the communication between different processes).
Whereas it is possible to attempt to mimick the synchronous client/server in-
teractions of the HTTP protocol using the same elements of the notation (Fig-
ure 2 a) — after all SOAP originally proposed as a transport-independent enve-
lope format that can wrap arbitrary content in XML so that it can be sent in
terms of messages over any kind of transport protocol [17] — we believe that a
more abstract and expressive notation is needed to represent at a higher level
of abstraction the semantics of such interactions (Figure 2 b). Following the
spirit of BPMN, the challenge consists of hiding such low-level communication
details of the HTTP protocol, which are the concern of technical people. On the
contrary, the goal is to let the business process modeler focus on capturing the
more fundamental RESTful interactions at a higher level of abstraction without
having to specify them as exchanges of HTTP request/response messages.

In particular, it should be possible to use a BPMN model to answer the
following modeling questions:

BPMN for REST 77

TaskTask R

GET

(a) BPMN 2.0 (b) BPMN for REST

Fig. 2. Modeling a task which performs a read-only GET request on a resource using
BPMN (a) and BPMN for REST (b)

– Which are the resources that a process depends upon for a successful execu-
tion?

– Which are the resources that are affected by the execution of a process?
– Can we reason about the behavior of stateful resources using a process

model?
– Which are the tasks of a process that have been made accessible to clients

as a resource?
– Which are the possible requests that can be sent to a resource whose behavior

is specified by a process?

The goal of this paper is to start a discussion on a possible minimal extension
to BPMN to be able to answer these and other similar questions. We will use
several examples in Section 4 to show that there is indeed a benefit of directly
and natively including in a BPMN model information suitable to answer these
modeling questions.

3 Notation

The BPMN for REST extension augments a small number of BPMN stencils with
the resource icon (Figure 3 a). The goal is to keep the extension as minimal and
lightweight as possible in order to avoid adding too many new graphical symbols
to an already complex notation. In order to avoid confusing the resource icon
shape with the existing signal shape, which also uses a triangle, the orientation

RR Task

R

(a) (b) (c) (d)

Fig. 3. The resource icon (a) applied to tasks published as a resource (b) and the
new resource request event (c) which should be distinguished from the standard signal
event (d)

78 C. Pautasso

Task A

Task C

Task B

Task D

R

R

R

R

PUT

DELETE

GET

POST

Fig. 4. Interaction with external resources

of the triangle used for the resource icon has been reversed (compare Figure 3 c
vs. d).

In this section we describe the notation for modeling the interaction between
processes and external resources (i.e., resource orchestration). Additionally, we
also show two different ways for processes to publish resources and handle re-
quests directed to their resources.

3.1 Modeling External Resources

Resources whose lifecycle is independent of a specific processe instance (e.g., a
remote RESTful Web service API) are represented using the data store symbol
refined with the resource icon (Figure 4). The intention is to depict an external
place where processes can read or write persistent data, with the additional
constraint that this place is a resource: the data store is addressed with a unique
identifier (a URI which is not shown in the diagram, but kept as a property
attribute of the shape) and it is accessed using the uniform interface (which
is more expressive than basic read/write operations as in the current BPMN
standard).

To specify the kind of interactions of tasks with such external resources we
suggest to use the message flow edges (since the intention is to model information
flowing across organizational boundaries) and to annotate the edges with the
actual verb to be invoked on the resource’s uniform interface. This way a precise
model of the interaction can be visualized. In particular, the direction of the

BPMN for REST 79

Task A Task

R

R

(a) Process published as a resource (b) Task published as a resource

BA C

R

(c) Sub-process published as a resource

Fig. 5. Publishing processes, tasks and sub-processes as resources

message flow edge reflects the information flow associated with the method2.
GET requests fetch information from the resource into the task consuming it;
PUT requests are symmetric since they allow tasks to update the state of a
resource, thus the information flows from the task into the external resource;
POST requests enable bi-directional information flow (thus the double message
flow edges). DELETE requests do not model any message flow, thus the edge
head shape has been slightly modified to visualize the “destructive” effect on
the resource targeted by the request.

3.2 Publishing Process Elements as Resources

Publishing process elements as resources entails defining a mapping between the
resource abstraction and some BPMN constructs so that modelers can declara-
tively specify which process elements should be published as a resource. To do
so, we propose to visually tag with the resource icon the processes, tasks, or
sub-processes which should correspond to a resource (Figure 5). The lifecycle of
such resource, as opposed to an external resource, will be implicitly entangled
with the lifecycle of the process instance.

2 Whereas in the notation examples used throughout the paper we chose to include
specific HTTP methods, the notation would work in a similar way for resources
having methods defined as part of a different, non-HTTP-based uniform interface.

80 C. Pautasso

More specifically, processes published as a resource get their own URI (e.g.,
/{process}) and follow a predefined behavior when handling requests through
the resource uniform interface. Processes which are not published as a resource
use an implementation-specific mechanism for their execution, which may or not
involve the use of a RESTful Web service interface. The /{process} resource
acts as a “resource factory” [1] as it allows clients to initiate the execution of
new process instances by sending POST requests to it. Following the POST-
REDIRECT-GET pattern3, the client will receive an identifier of the newly
started process instance (e.g., (POST /{process}; 302 Redirect, Location:
/{process}/{instance})) and the execution of the process will continue in the
background. The clients may then use such identifier to safely retrieve (with
GET /{process}/{instance}) the result of the process once it completes its
execution. Process instances may still be created using the other mechanisms
(message events, receive tasks, event-based gateways) foreseen by BPMN. Also in
this case process instances get their own URI, which however has to be discovered
by clients through a channel which should be independent of the instantiation
mechanism (e.g., by asking the process engine to enumerate the URIs associated
with the process instances of a certain user).

At any time, clients can also use the process instance resource identifier to
retrieve a global view over a running process instance by GETting its repre-
sentation, which – depending on the chosen media type – may contain links to
the individual tasks which have been published as a resource. A client may be
interested in only listing all active tasks of a process instance, as opposed to
retrieving links to all tasks and then having to poll each task to determine its
state. By default task URIs can be automatically generated by concatenating the
process instance resource idenfier with the name of the task BPMN element (i.e.,
(/{process}/{instance}/{task}). It may be possible to override such default
naming convention with a manually defined URI associated with the task. As
shown in [8], a more complex URI template would be necessary to distinguish
multi-instance tasks (in case those are published as resources). Concerning tasks
which are found within loops, the URI would point to the most recent state of
the loop, i.e., so that clients can bookmark and retrieve a representation of the
state associated with the task most recent iteration.

Once a task URI has been retrieved, a client may perform a GET request
on it to read task-specific information (e.g., its state, its input/output param-
eter values). Clients may also perform a PUT request to change the state of
a task (i.e., to indicate that its execution has completed) and set the value of
its output parameters. Clients are not allowed either to POST or DELETE in-
dividual task resources. Once all tasks have completed their execution, their
final state remains associated with the corresponding resources until a DELETE
/{process}/{instance} request is performed. Only then, all information asso-
ciated with all tasks of a process instance is removed.

3 This could also be implemented using the 201 Created status code, which however is
not yet fully supported by Web browsers, which will not continue the navigation to
the URI found in the Location header unless the 302 Redirect code is used instead.

BPMN for REST 81

As shown in Figure 5 (c), it is also possible to associate resources with subpro-
cesses. The idea is that these resources become visible to clients only during the
execution of the sub-process. Once the execution leaves the sub-process block,
then the resources are not longer visible. Clients may perform GET requests on
the corresponding identifier (/{process}/{instance}/{sub-process}) to re-
trieve the state of the resource associated with the sub-process. PUT requests can
also be allowed so that information from clients can flow into the sub-process and
affect the behaviour of the tasks found within. In general, POST and DELETE
are not allowed. In fact, DELETE requests could be used to allow clients to trig-
ger the cancellation of the sub-process block (assuming that the corresponding
cancellation handlers have been attached to the sub-process block).

Whereas the details of how to map processes/tasks to resources can be fur-
ther refined, the main goal is to abstract the complexity of the interactions here
described and very simply depict the difference between private tasks of the pro-
cess model from tasks that become accessible from clients through a predefined
RESTful Web service interface.

onPOSTonGET onDEL

R

POST

GET DELETE

Fig. 6. Handling different request methods (e.g., GET, POST, DELETE) with the
resource request event. Methods which are not explicitly modeled (e.g., PUT) will
result in a 205 method not allowed response status code.

3.3 Modeling Internal Resources: The Resource Request Event

For a more detailed and fine-grained model of how processes can be used to
specify what happens inside resources, we propose to introduce a new kind of
top-level event (Figure 6). This event is triggered whenever a client performs a
request on the corresponding resource. The event can discriminate the different
verbs associated with the request so that different tasks of the process can be
activated depending on whether a GET or a POST request was received by the
resource. Graphically, we associate the verbs with the control flow edges outgoing
from the event. For simplicity and consistency the resource request event reuses
the same resource icon as before.

The execution semantics of the resource request event is analogous to existing
BPMN events. A process may accept a request sent to a resource even if the
execution path triggered by previous requests has not yet completed. Multiple

82 C. Pautasso

execution of the tasks associated with the resource request event can be serialized
for POST, PUT, DELETE requests, while read-only safe GET requests may be
executed concurrently for optimization purposes. It is important that the tasks
associated with the request handling paths of a request event conform to the
safety and idempotency properties of the corresponding methods.

4 Examples

4.1 Local Search Mashup

The local search mashup process models how information from an external
RESTful API can be processed in order to be visualized on a map widget. The
process contains three tasks: 1) retrieve the search results with a GET request
on an external resource representing, e.g., the Google Search API; 2) process the
results (Geocode) so that they can be converted to a format which is suitable
for plotting them on a map; 3) generate an HTML page with the map and the
results.

The two versions of the process shown in Figure 7 differ in terms of how
they model how the result of the process is made available to its clients. Version
(a) makes explicit use of an external resource to store (with a PUT request)
the results of the mashup. The lifecycle of the resource is completely decou-
pled from the one of the process using it to store its results, meaning that the

Google
Search

Google
Search

Map Map

Geocode

Local Search Mashup Local Search Mashup

Geocode

R

R R

PUT

GET GET

R /mashup

(a) Result published to external resource (b) Process published as a resource

Fig. 7. Local Search Mashup example

BPMN for REST 83

BPMN engine can use its own mechanism to start the process and manage
its state. Once the state of the process instance is cleaned up, the external re-
source carrying its results is still available. Conversely, in Version (b) the mashup
process model is published as a resource. Therefore clients can retrieve (GET
/mashup/{instance}) at any time its execution state, as this is associated with
the corresponding process instance resource. Once the execution reaches the fi-
nal Map task, the state of the process resource will also include the output of
this task, which thus can be retrieved by clients (even if the task is not explicitly
published as a resource). Once clients DELETE the process instance resource,
the output of the mashup will no longer be available.

4.2 Loan Approval

We use the classical loan approval process to illustrate how a business process
model can make use of the proposed notation to publish some of its tasks as
a resource and to interact with external resources. The process as a whole is
published as a resource, which is identified by the /loan URI. Two of its tasks
(called choose and approve, marked with the resource symbol in Figure 8) are
published as resources. The other tasks are not visible from clients but carry
out important back-end activities, such as checking the validity of incoming loan
applications, contacting different banks for the latest rates as well as confirming
the loan, if an offer has been chosen by the customer and approved by manage-
ment. Both the retrieval and the confirmation tasks are backed up by an external
resource which belongs to the Bank Web Services swimlane.

The notation helps to distinguish that the first interaction (getting the cur-
rent rate) is a single read-only GET request, while the final confirmation is an
idempotent PUT request. The notation could be further refined to indicate that

Check

L
o
a
n

A
p
p
ro

v
a
l

Customer Loan Application Client

Manager Loan Application Client

/loan

/loan/X/choose /loan/X/approve

Bank Web Services

GetRate Choose Approve Confirm

R

R

R R

R

GET PUT

Fig. 8. The Loan approval process example

84 C. Pautasso

the confirmation URI was dynamically discovered by the loan approval process,
as it could have been provided by the Bank Web Service as a hyperlink found
in the response to the GET rate request.

The interaction between the choose and approve tasks with the correspond-
ing clients happens through several request-response rounds as described in the
semantics of the “task published as a resource” extension. The pair of edges
going from the task to the swimlane representing the client abstract an arbi-
trary number of requests to the task resource (i.e., GET the current state of
the task, or PUT the task in another state) which can happen during the entire
lifecycle of the whole process. Such interactions may be allowed or disallowed
depending on the current state of the tasks (e.g., once a task has been PUT into
a completed state, further state changes will be restricted). This should explain
why the shape of the edges is different than the “message flow” edges chosen to
represent a single request-response interaction with an external resource.

4.3 RESTBucks

The RESTBucks example is adapted from [19]. It was one of the original case
studies advocating the practical usage of REST and hypermedia to guide clients
in discovering and following complex distributed workflows. As shown in Fig-
ure 9, the BPMN for REST extensions are also suitable to visualize the interac-
tion between a customer and the RESTBucks order management process.

Clients can download a menu (with GET), choose a flavour of coffee (local
decision task) and follow a hyperlink to place an order with a POST request
to the RESTBucks process, which has been published as a resource. The newly
started process instance collects the order request and uses it to compute a price,
which is passed to the payment task. The customer can retrieve the price to be
paid with a GET request on the payment task, since this has been published
as a resource. The response also contains the form to be filled out with the
payment details, which can then be submitted with a PUT request also to the
same Payment task. Once the PUT request reaches the payment task, its exe-
cution completes and the payment information can be validated. If the payment
validation is successful, a receipt is produced and stored in the corresponding
resource. The client can track the status of the order by GETting the corre-
sponding process instance resource at any time, eventually this status will also
contain a link to the receipt resource, which can also be retrieved by the client.
Since it is modeled as an external resource, the payment resource will remain
available even if the process instance is deleted.

The model of the RESTBucks process also includes the ability to handle
updates to the order once it has been created. These can be submitted by clients
using a PUT request on the order process instance resource. Such requests will
trigger the recalculation of the price by making use of the new resource request
event. However, once the payment is received, it is no longer possible to change
the order, as modeled with the event sub-process handling the PUT request
(which will exit as soon as the Payment task completes).

BPMN for REST 85

CalcPrice

CalcPrice

Read
Menu

Choose
Coffee

Place
Order

Get
Price

Pay

Get
Receipt

Drink
Coffee

Receipt

Payment

Check
Payment

RESTBucks

Customer

R

R

R
R

GET

GET

PUT

GET

POST

PUT

R

PUT

Fig. 9. The RESTBucks order management process example

5 Related Work

This paper shares a similar motivation with our previous work on the BPEL
for REST [14] extensions. The concept of using the BPEL language to control
the state of resources was first proposed in R-BPEL [12]. The idea of a RESTful
Web service API to access the state of workflow instances has been also described
in [22], where similar predefined interaction patterns to instantiate new processes
where described. A similar idea has been followed in the implementation of the
HTTP API of the Activiti BPMN engine.

86 C. Pautasso

6 Conclusion

This paper informally sketches the graphical syntax and extended semantics
of an proposal for applying the BPMN notation to model RESTful business
processes. The goal is to give a precise, expressive yet simple representation of
processes which interact with external resources (such as RESTful Web services
APIs), and to specify with various degrees of refinement which elements of a
process model (tasks, sub-processes or even entire processes) can be published
as a resource. Whereas the extensions have a minimal impact on the complexity
of the visual syntax of the standard notation, they can already be useful to
express several non-trivial RESTful business process model examples.

7 Future Work

Further research is needed to refine the extension to support more dynamic as-
pects of RESTful business processes, which include features such as: late binding
of tasks to dynamically discovered resource identifiers, content-type negotiation
and generalized support for hypermedia protocol design. More in detail, we are
working on defining the specific meta-model elements associated with the pro-
posed notational elements and have started to look into the problem of how to
verify that tasks associated with request events can satisfy the safety and idem-
potency properties of the corresponding methods. We particularly welcome the
feedback from the community concerning the specific advantages or disadvan-
tages of using the proposed notation extension in order to set up a more detailed
usability and usefulness analysis.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their positive and constructive feedback. This work is partially supported
by the S-CUBE network of excellence (EU-FP7-215483) and by the Swiss Na-
tional Science Foundation with the CLAVOS - Continuous Lifelong Analysis and
Verification of Open Services project (Grant Nr. 200020 135051).

References

1. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly & Associates, Se-
bastopol (2010)

2. Assmann, U.: Invasive Software Composition. Springer, Heidelberg (2003)
3. Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:

van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine, California (2000)

5. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

6. Foster, I., Parastatidis, S., Watson, P., McKeown, M.: How Do I Model State? Let
Me Count the Ways. Communications of the ACM 51(9), 34–41 (2008)

BPMN for REST 87

7. Humphrey, M., Wasson, G.S., Jackson, K.R., Boverhof, J., Rodriguez, M., Gawor,
J., Bester, J., Lang, S., Foster, I.T., Meder, S., Pickles, S., McKeown, M.: State
and events for Web services: a comparison of five WS-resource framework and
WS-notification implementations. In: Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC-14), pp. 3–13
(2005)

8. Lessen, T.V., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Manage-
ment Framework for WS-BPEL. In: Proc. of the Sixth European Conference on
Web Services (ECOWS 2008), pp. 187–196 (2008),
http://dl.acm.org/citation.cfm?id=1488724.1488774

9. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Systems Journal 41(2), 198–211 (2002)

10. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In: Bellahsène, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-69534-9_35

11. OMG: BPMN: Business Process Modeling Notation 2.0. Object Management
Group (2010)

12. Overdick, H.: Towards Resource-Oriented BPEL. In: Proc. of the 2nd ECOWS
Workshop on Emerging Web Services Technology (WEWST 2007) (November
2007)

13. Pasley, J.: How BPEL and SOA Are Changing Web Services Development. IEEE
Internet Computing 9(3), 60–67 (2005)

14. Pautasso, C.: RESTful Web Service Composition with BPEL for REST. Data &
Knowledge Engineering 68(9), 851–866 (2009)

15. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. ”Big”
Web Services: Making the Right Architectural Decision. In: Huai, J., Chen, R.,
Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., Zhang, X. (eds.) 17th International
World Wide Web Conference, pp. 805–814. ACM Press, Beijing (2008)

16. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly & Associates, Sebastopol
(2007)

17. Vinoski, S.: RPC and REST: Dilemma, Disruption, and Displacement. IEEE In-
ternet Computing 12(5), 92–95 (2008)

18. Vinoski, S.: Serendipitous Reuse. IEEE Internet Computing 12(1), 84–87 (2008)
19. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and

Systems Architecture. O’Reilly & Associates, Sebastopol (2010)
20. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services

Platform Architecture. Prentice Hall (March 2005)
21. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer, Hei-

delberg (2011)
22. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-

ography Standards — The Case of REST vs. SOAP. Decision Support Sys-
tems 40(1), 9–29 (2005)

http://dl.acm.org/citation.cfm?id=1488724.1488774
http://dx.doi.org/10.1007/978-3-540-69534-9_35

	BPMN for REST
	Introduction
	Background and Motivation
	Notation
	Modeling External Resources
	Publishing Process Elements as Resources
	Modeling Internal Resources: The Resource Request Event

	Examples
	Local Search Mashup
	Loan Approval
	RESTBucks

	Related Work
	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

