
�

�

�

�

�

�

�

�

5

Control-Flow Patterns for Decentralized RESTful Service
Composition

JESUS BELLIDO and ROSA ALARCÓN, Pontificia Universidad Catolica de Chile
CESARE PAUTASSO, University of Lugano

The REST architectural style has attracted a lot of interest from industry due to the nonfunctional prop-
erties it contributes to Web-based solutions. SOAP/WSDL-based services, on the other hand, provide tools
and methodologies that allow the design and development of software supporting complex service arrange-
ments, enabling complex business processes which make use of well-known control-flow patterns. It is not
clear if and how such patterns should be modeled, considering RESTful Web services that comply with the
statelessness, uniform interface and hypermedia constraints. In this article, we analyze a set of fundamen-
tal control-flow patterns in the context of stateless compositions of RESTful services. We propose a means of
enabling their implementation using the HTTP protocol and discuss the impact of our design choices accord-
ing to key REST architectural principles. We hope to shed new light on the design of basic building blocks
for RESTful business processes.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; H.5.4
[Information Interfaces and Presentation]: Hypertext/Hypermedia

General Terms: Design, Standardization

Additional Key Words and Phrases: Web services, service composition, REST, control flow, business
processes, control-flow patterns

ACM Reference Format:
Bellido, J., Alarcón, R., and Pautasso, C. 2013. Control-flow patterns for decentralized RESTful service
composition. ACM Trans. Web 8, 1, Article 5 (December 2013), 30 pages.
DOI:http://dx.doi.org/10.1145/2535911

1. INTRODUCTION

A REST architecture is defined by a set of architectural constraints that aims to guar-
antee the scalability of the interaction between architectural components, the uni-
formity of the interfaces between such components, and its independent evolution
[Fielding 2000]. REST’s central element is the resource consisting of server-side con-
ceptual entities that can be globally addressed and referenced through URIs and whose
state is passed to clients through representations, encoded in various media types (e.g.,
HTML) [Richardson and Ruby 2007]. A REST service can be seen as a set of such
resources that provide coherent access to the state and the functionality of a software
component published on the Web. Traditionally, Web services are described by a WSDL

This work is supported by the Center for Research on Educational Policy and Practice (CONICYT), Grant
11080143.
Authors’ addresses: J. Bellido (corresponding author) and R. Alarcón, Computer Science Department, Pon-
tificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Santiago, Chile; email: jbellido@uc.cl;
C. Pautasso, Faculty of Informatics, University of Lugano (USI), via Giuseppe Buffi 13 CH-6904, Lugano,
Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1559-1131/2013/12-ART5 $15.00
DOI:http://dx.doi.org/10.1145/2535911

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:2 J. Bellido et al.

document and use the SOAP [Mitra and Lafon 2010] protocol to communicate. These
WSDL/SOAP services can be arranged into composite services that enable a business
process executed by a process engine [Pautasso 2009c]. The business process defines
the set of interactions among multiple services that are required to achieve a goal;
services’ interactions (i.e., machine-to-machine) are regulated through simple and com-
plex control patterns (e.g., branches, parallel flow, sequential invocation, discrimina-
tor) that determine the partial order of the service’s operations invocation [Hamadi
and Benatallah 2003; Russell et al. 2006].

From the control-flow perspective, service composition is seen as an orchestration in
which the coordination of the control flow is centralized in a single component (e.g.,
the composed resource behaves as an orchestrator), or as a choreography, in which
control flow is distributed among a set of participant services. Concerning the state
of the composed service, we distinguish stateful composed services if the information
about the progress of the interaction with the participant services is kept locally on
the composed service, or stateless if the composed service does not maintain local state,
but instead maps a user agent’s requests to origin services directly [Pautasso 2009b].
Current proposals for RESTful service composition are mainly stateful.

Control flow in a RESTful system is driven by the choices performed by humans
through flexible user interfaces and clients (e.g., Web browsers). This approach, also
known as follow your nose, is possible because the resource’s representations include
the required controls to change the state of the resource (e.g., to post an updated state)
or the links to retrieve related resources. Resources are connected through controls and
links, resulting in a hypermedia graph that determines the set of possible state transi-
tions (hypermedia constraint). The semantics of such links and controls, however, can
be only understood at the application domain level (e.g., a POST control could imply
a payment placement), so that when machine-clients instead of humans must choose
which links or actions to follow, this becomes a nontrivial task.

Despite the possibility of explicitly annotating links in order to make clear their
purpose, the semantics of such annotations still require a shared understanding for
the machine-clients that participate in a service composition, increasing then the cou-
pling between components. In addition, since resource providers keep control of the
resources, they can evolve independently of the client’s expectations, that is, resource
URIs, supported methods, representations, and possible state transitions (i.e., links
and controls) can change unexpectedly. Hence, clients must minimize their assump-
tions about the resources (e.g., about URIs or URI template structures) and how they
are related (e.g., the underlying hypermedia).

Traditional WSDL/SOAP-based service control-flow patterns rely on an operation
centric and a centralized style that doesn’t comply with REST constraints. By imple-
menting such control-flow patterns in compliance with REST constraints, we present a
novel perspective on how to provide fully decentralized support for control flow. In this
article, we present a subset of the control-flow patterns well known in the business
process management community [van der Aalst et al. 2003] in a way that supports a
composition style for RESTful services that is fully decentralized, hypermedia-aware,
and stateless. In order to maintain a loose coupling between the resources participat-
ing in a REST service composition, we minimize the shared understanding of compo-
nents by placing control-flow semantics at the protocol level through extensions to the
HTTP protocol status codes. We rely also on minimal ReLL [Alarcón and Wilde 2010]
descriptions and a fully decentralized model based on callback connectors that allow us
to implement stateless REST service composition. A realistic scenario based on long-
running business processes is presented to illustrate the advantages of our approach;
we also discuss our design considering its impact on the key architectural properties
of REST.

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:3

This article is organized as follows: Section 2 introduces basic concepts regarding
REST services composition; Section 3 presents a motivating scenario and the ratio-
nale of our approach. Section 4 presents our proposal for a set of basic and advanced
control-flow patterns for REST services. Our reference implementation is described
in Section 5, while Section 6 presents a comparative evaluation of different QoS at-
tributes. Section 7 discusses the impact of our approach on key REST architectural
properties. Finally, Section 8 presents our conclusions and proposals for future work.

2. BACKGROUND

REST architectural components comprise origin servers, gateways, proxies, and user
agents that are associated through connectors, such as clients and server interfaces,
caches, resolvers, and tunnels. A REST architecture is determined by the roles of
the architectural components, their limitations, and their behavior when they inter-
act with each other, instead of determining the component’s implementation details
or the protocol syntax. The cornerstone design element of REST is the resource. Re-
sources provide a globally addressable and uniformly accessible abstraction over a
service’s data and functionality. Resource’s states are transferred across architectural
components through representations; components operate on the resources through
the metadata information (e.g., headers), links, and controls (e.g., a form allowing to
POST new information) embedded in the representations [Fielding 2000]. Resources’
links and controls give shape to a distributed hypermedia graph that determines the
set of possible actions and state transitions that user agents can perform.

Traditional Web service composition is based on the availability of endpoints that
expose the service’s interface but hide its implementation, invocation effects, and se-
mantics. With RESTful services, the implementation, effects, and semantics instead
are fully exposed through links and standardized operations. Thus there is a need to
research how to avoid violating the basic constraints (e.g., statelessness, uniform inter-
face, and hypermedia) and principles (e.g., dynamic binding) of REST when composing
services.

Control-flow patterns are the basic building blocks in traditional service composition
but are also conceived for stateful, centralized workflows that compromise scalability
and loose coupling [Pautasso and Wilde 2009]. In this article, we extend the current
research on RESTful service composition by presenting control-flow patterns designed
in a way that complies with RESTful constraints by exploiting link processing (see
Section 2.2) and HTTP interactions (see Section 2.3). Our approach is both stateless
and decentralized (as exemplified in Section 3), whereby the state of the composed
service and the responsibility for interacting with the participant services are deferred
back to the user agents.

In order to comply with the REST constraints, we avoid introducing additional ar-
chitectural components but propose to extend the uniform interface, (specifically the
HTTP redirection codes) at the protocol level, since this approach allows normative
organizations to introduce standards for the behavior of user agents without breaking
current implementations. In addition, for fully automatic RESTful service composition,
links semantics need to be understood at the application domain level so that machine-
clients can choose the proper operation. Unfortunately, there is not yet an agreement
on a way to convey such semantics. In this article, we rely on ReLL (Section 2.4), which
is a hypermedia-centric description of RESTful services.

2.1. Service Composition in REST

Service composition is the process that assembles component services into new,
composed services which can be recursively used as components for other services
[Benatallah et al. 2003; Peltz 2003]. The result of composing REST services is a new

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:4 J. Bellido et al.

REST service that behaves as an intermediary between the user agents that consume
it and the origin services that provide the REST service components [Pautasso 2009b].
REST service composition poses additional challenges with respect to traditional Web
service composition, for instance, dynamic late binding, that is, binding the resources
to the composed service at runtime, must be supported, since actual resources’ URIs
can only be discovered when inspecting the corresponding representations.

JOpera is one of the most mature platforms for supporting REST services compo-
sition; it satisfies most REST service language composition requirements [Nierstrasz
and Meijler 1995; Pautasso 2009a]. Visual editors supports the design of manual, cen-
tralized, stateful service composition that can be executed by an orchestration engine;
it also addresses control- and dataflow as well as data transformations, and the result-
ing service composition is written as a BPEL extension for REST [Pautasso 2009c].
Similarly, Bite [Rosenberg et al. 2008] proposes a BPEL-inspired workflow composi-
tion language describing both control- and dataflow. Bite can mint URIs for resources
created but cannot inspect representation content and selectively retrieve the URIs
served by the service and support the hypermedia constraint.

Decker et al. [2009] present a formal model for REST process enactment based on
Petri Nets, PNML (Petri Net Markup Language), and an execution engine. They par-
tially support dynamic late binding by minting URIs for created resources but do not
fully support the hypermedia constraint, neither complex guard conditions such as the
existence of information stored on the client side (e.g., cookies) nor content negotiation
(only XML as media type). Garrote [Hernández and Garcı́a 2010] proposes a formal
model for a semantic REST service inspired by the triple space computing models and
process calculus. The calculus describes unambiguously both semantic RESTful re-
sources and composition workflows. The proposal considers the hypermedia constraint
but still lacks a typed theory for representing typed patterns (e.g., transactions) and
typed resources as well as complex workflow patterns. Zhao et al. [2011] also propose a
formalization of RESTful services composition based on linear logic. A set of additional
business axioms as well as the selection of the corresponding control-flow pattern (e.g.,
alternative, sequence, etc.) is defined on design time. The hypermedia constraint and
the dynamic late binding property are not addressed at all in the proposal; hence,
evolvability of the composed services is severely compromised.

Other approaches rely on Semantic Web technologies. For instance, in Verborgh et al.
[2012] invocation of controls can be performed through an N3 extension called REST-
desc, and representations served can be later processed. By differentiating links that
convey meaning from links that imply interaction (e.g., controls such as a POST), it is
possible to build a semantic user agent. Although promising, it is not clear how com-
plex control-flow patterns, other than sequential invocation and conditional invocation,
can be represented; or how dynamic binding and hypermedia could be supported. In
He et al. [2012], Semantic Web technologies are used to model contextual information
from users, sensors, and things so that machine-clients can make sense from the re-
sponses. URIs are used to identify abstract concepts and physical objects whose state
is read through GET requests. Authors identify sequences (chains of service requests),
conditional selection of responses and merging of responses. They also store interme-
diate states as resources on the server side in order to gain scalability.

2.2. Links Processing

Clients process the links embedded in resource representations in the following order:
protocol, hypermedia, and application [Zuzak et al. 2011] (Figure 1). At the protocol
level, clients generate new requests based on control data (e.g., a “303 See Other” sta-
tus code), and protocol-level links (e.g., the Location header parameter accompany-
ing the status code). At the hypermedia level, clients generate requests based on the

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:5

Fig. 1. Links processing levels.

links to resources embedded in the representation (e.g., the src attribute of the ,
<script> HTML elements), that must be fetched in order to achieve a steady state (i.e.
there are no resources pending to be fetched).

Choosing among any of those levels as a foundation for complex control flow has its
own trade-offs. For the case of HTTP, extensibility is supported at the level of status
codes, media types, code on demand, and metadata (headers). Implementing control
flow at the hypermedia-level requires a shared understanding of either the metadata
that accompanies links (rel), specialized media types (e.g., RDF, EDI, etc.), special-
ized tags, or content marks (e.g., keywords) for nonstructured content. The resource
description framework (RDF) represents Web information in a minimally constraining
and flexible way. An RDF expression is a collection of triples. In each triple, a predicate
indicates a relationship between subject and object [Beckett and McBride 2004]. Elec-
tronic data interchange (EDI) enables technologies for conducting business-to-business
transactions according to predefined information format and rules without human in-
terference [Narayanan et al. 2009]. Even though the problem of media types that do
not support tags or links can be overcome through Web linking [Nottingham 2010]
(link headers), the problem of defining generic data structures and parser rules in or-
der to achieve a shared understanding between clients and servers still remains and
introduces stronger coupling between parties.

Since the application level deals with user interaction (or application goals), it will
be necessary to rely on such a level if the control operation requires user participa-
tion (e.g., choosing an alternative) which also requires the user (or another machine
such as a service) to understand the links/control semantics at the application domain
level. At the protocol-level, however, the coupling between parties diminishes, since
they must agree on the meaning of the protocol itself (i.e., status codes). Since sta-
tus codes regulate interaction between clients (user agents) and origin servers, it will
also be possible for Web intermediaries to handle messages (e.g., for caching, routing,
supporting load balancing, etc.), without requiring to parse the message content, that
is, visibility of the interaction between components can also be supported. For these
reasons, our approach focuses on modeling control-flow patterns at the protocol level.

2.3. HTTP-Based Interaction

Interaction between REST architectural components is based on message interchange,
being HTTP (Hypertext Transfer Protocol [Fielding et al. 1999]) the primary protocol,
although REST does not restrict communication to a particular protocol. In an HTTP
interaction, a client sends a request message to a server which produces a response

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:6 J. Bellido et al.

message. The first line in the response contains a 3-digit integer (status code) among
other information [Fielding et al. 1999].

Status codes are categorized as indicated by its first digit so that architectural com-
ponents behave in a determined way, for instance, the 3xx codes are reserved for redi-
rection. Redirection codes allow servers more control of the interaction, since they can
guide the client to contact further resources. Unfortunately such redirection is auto-
matically executed only if it was caused by a GET or a HEAD request; otherwise the user
agent needs the end-user confirmation to move forward the request. If the user agent
is driven by a machine-client it must either understand the consequences of the redi-
rection at a domain level or blindly follow the redirection. Furthermore, for the case
of POST operations, a 303 (See Other) code can be issued indicating that the response
can be found under a different URI and should be retrieved using the GET method on
such resource so that it will be impossible for a server to instruct the client to issue a
POST message for a different resource. Unlike 303, the 307 (temporary redirect) code
allows redirected clients to interact with a new resource using any method; however,
it must contain the original information and must be confirmed by the end user. More
complex actions (such as a condition evaluation) are not considered.

Since HTTP codes are extensible, a client application may not understand the mean-
ing of an unregistered code (e.g., 353), but it must understand its category and handle
the message accordingly, that is, if the 353 status code cannot be recognized it must be
treated like a 300 code (redirection).

2.4. Resource-Oriented Service Description

Ideally, a REST service description must allow clients to deal with (1) dynamic late
binding where resource URIs are discovered from a representation at runtime, (2) the
uniform interface (i.e., a shared understanding of the interface semantics), (3) dynamic
typing through content-type negotiation, and (4) exception handling [Pautasso 2009b].
Existing REST service description proposals (e.g., WADL [Hadley 2009], WSDL 2.0
[Chinnici et al. 2009]), have gained limited acceptance, since they are focused on an
operation-centric approach. Current approaches do not consider the uniform interface
as a shared, implicit understanding. Instead, they explicitly detail the interaction in
such a way that changes on the origin servers break clients so that evolvability is lim-
ited due to the introduced coupling. Even though there is still a debate regarding the
need for a formal description for RESTful services, the existence of such descriptions
may facilitate the automatization of machine-client and RESTful services interaction.
Our approach relies on ReLL [Alarcón et al. 2010], a hypermedia-centric service de-
scription language with minimal coupling between clients and services [Bellido et al.
2011].

2.4.1. ReLL. The Resource Linking Language describes a set of assumptions that
clients expect from servers, such as resources identifiers, representations, links to
other resources, controls for state changes, and a mechanism to obtain the links from
the representation so that dynamic late binding is possible. A ReLL REST service de-
scription is a declarative, partial hypermedia where resources and links are typed so
that clients can make sense of the underlying model and navigate by brute force (e.g.,
a crawler) or purposefully (e.g., following a path towards a goal). The description is
intentionally left incomplete to deal with the independent evolution of client and ser-
vices (e.g., a service provider may change resource URIs, the connection may fail, the
response of a message includes an unexpected media types, etc.). Therefore, clients
use the description as a navigation map and can fail gracefully in the sense that they
must stop their behavior and notice the cause of failure (i.e., an assumption has failed).

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:7

Fig. 2. ReLL description for the resources catalog of products and shoppingCart.

Partial knowledge in ReLL prevents the automatic generation of client code and hence
reduces coupling between clients and servers.

Figure 2 presents an example of a ReLL description for two interlinked resources
of type catalog and shoppingCart. Resources have internal identifiers (e.g., products
and cart) that may differ from their corresponding types, since the former are limited
in scope. Lines 2 and 3 indicate a way to validate the expected URI so that a machine-
driven user agent could verify at runtime whether a part of the service interface (the
URI) has changed by executing a regular expression. Lines 3 and 14 indicate the re-
sources’ media types so that a user agent can negotiate the proper representation.
A link structure is declared in lines 4, 15, and 20. It declares a typed relation (e.g.,
select) between an origin resource (e.g., product) and a target resource (e.g., cart), as
well as the required information for extracting the link (selector and location), and
actually following it (protocol). Validation for control payload (e.g., a PUT operation)
is supported through a regular expression or an XPath expression depending on the
payload data format (Line 21). In Bellido et al. [2011], links and control semantics for
choreographies are embedded in Link Headers following the Web Linking standard,
under a simple control flow (sequential). For simplicity, in the examples presented
in this article, we will use Web Linking for serving the hypermedia controls to user
agents.

3. COMPOSING LONG-RUNNING RESTFUL BUSINESS PROCESSES

Synchronous, blocking service invocation implies that clients must wait for a response
in order to continue with the interaction. This solution works fine if the client-server
connection remains open until the response becomes available; however, for the case of
high-latency services, such as those involved in long-running business processes, this
is not the case. Long-running business processes are typically executed over a long pe-
riod of time, involving loosely coupled services that may cross various organizational
contexts and are typically coordinated by a third party [Dayal et al. 2001]. Consider
the business process shown in Figure 3. In this scenario, the business process of a

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:8 J. Bellido et al.

Fig. 3. The Commerce REST service composes the REST services Seller, two Banks, a Delivery, Delivery,
Email, and Authentication.

certain Commerce composes various other processes, Sellers, Banks, and Delivery or-
ganizations, as well as utility services, such as Authentication and Email services.

The business process begins when a user places a request to get the available prod-
ucts via the commerce service. The user selects the products to buy from the list of
available products provided by a Seller service. Once the products are chosen, the user
is required to be registered through an OAuth authentication service in two sequential
steps. First, the user authorizes the Commerce service to access a subset of his or her
data, and in the second step, the authorized Commerce service gets the user’s data
and generates a Purchase Order, including the chosen products. Once the purchase
order has been generated, the total amount is calculated by iteratively adding the
value of each item. Following this, the user must choose either one of two payment
options offered by the Commerce service, that is, Bank1 or Bank2. Each payment
option requires user intervention and occurs out of the conversation band between
the Commerce service and the user (i.e., between the Bank service and the user) to

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:9

Fig. 4. Centralized implementation of the composed Commerce REST service.

guarantee a safe process. Finally, Commerce service user sends an email to support
the result of the buying process and simultaneously generates a dispatch order of the
purchased products.

In the described process model, activities that require user participation (e.g., prod-
ucts selection, authentication, payment, dispatch confirmation) can also involve a few
days for the case of complex transactions (e.g., international shopping) or just because
the users availability. In addition, various control-flow patterns are required to coor-
dinate services interaction, such as sequential invocation for OAuth and the business
process main activities, iterative invocation to check product prices, conditional invoca-
tion depending on the Bank, and parallel invocation of the final process step, delivery
and confirmation email.

Traditionally, WSDL/SOAP-based and RESTful services composition is implemented
following an orchestration-based centralized approach. This style presents not only
limitations for the scalability, performance, and availability of the composed service;
it also limits the interaction of the service components, that is, it requires designing
components in a way that fits every possible future usage, compromising its evolvabil-
ity and REST principles. Even though a decentralized approach may favor scalability
and loose coupling, there still remains the problem of state handling for the composed
service, that is, if control is going to be distributed among the service components,
there is still the need to coordinate their behavior so it can comply a determined busi-
ness process. Sections 3.1 and 3.2 discuss the current approaches when dealing with
centralized versus decentralized design and state-handling, respectively. They also ex-
plain the trade-offs we face when pursuing a fully decentralized, RESTful compliant
service composition. The conclusion of this discussion is presented in Section 3.3.

3.1. Centralized versus Decentralized Control Flow

In Figure 4, an implementation of the proposed scenario relying on a centralized inter-
action between the parties is shown (the base URI of participants is omitted for read-
ability). We will focus on the Commerce, Seller, and Bank interaction, since they
provide enough complexity to illustrate our design choices. The interaction starts
when the user places a purchase order by sending a POST message to the PO resource
(1), which is part of the Commerce REST service. The server generates a subordi-
nated resource, PO/{id} the purchase order, and redirects the user agent to fetch (GET)
such resource (2). The PO/{id} resource represents a business process instance for a

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:10 J. Bellido et al.

particular client that will perform the composition and will also allow the user to in-
spect the composition state at any time (with GET) [Pautasso 2009a].

The first action of the composed service is to retrieve (GET) the Products resource (4),
which is part of the Seller service. Notice that since the composed resource behaves
as a client of the Products resource, it cannot simply move the response as-is to the
user agent so that an end user can choose (through a Web browser) the products he or
she wants to buy. If that were to happen, the composed resource would lose control of
the interaction (e.g., the user may submit the products lists directly to the Products
resource). Hence, the composed resource must implement various strategies to deliver
the products list to the end user without losing control of the interaction (e.g., through
javascript, modifying the resource representation, etc.). Once the composed resource
obtains the final products list (5), it updates its internal state and invokes the next
resource, Transaction, which is part of the Bank service, through a POST message (6).
The resource response (7) indicates the state of the transaction (either succeeded or
failed) and causes the composed resource to update its internal state. The composed
service then finishes its execution responding with the purchase order details.

Since the component resources (Products or Transaction) cannot interact directly
with the end-user through the user agent, they have no autonomous control over their
participation. Furthermore, any component service may require a long time to com-
plete its execution and provide a response (messages 5 and 7). For instance, a bank
may require one or more business days to complete the transaction due to business
logic (e.g., the amount is too high, the payment target resides in a foreign country,
the end-user receives an email for authorizing the transaction that shall be answered
within three business days, etc.) or to internal processes (e.g., a failure).

A centralized approach requires the server to keep track of the interaction state (to
move the interaction forward later), between the composed resource and its compo-
nents on the server side, which implies a stateful style that violates REST constraints
and has a negative impact on server scalability. One solution is that the composed
service includes a complex logic for deallocating server resources, that is, it may close
active connections with component services and constantly polling later to find if the
response is available, it may execute compensatory transactions that restore the ser-
vices to their previous state in case the response is a failure. Or it may close the con-
nection with the client and trust it to remember the business process instance address
(PO/{id}) and to contact the server again later. This approach is generally implemented
in WSDL/SOAP service composition (orchestrations) and JOpera for REST.

An alternative is to rely on a fully decentralized style based on asynchronous mes-
sages and callback connectors, as shown in Figure 5. Similarly to the centralized strat-
egy, once a PO resource receives a POST message (1), it creates a subordinated resource
(PO/{id}) which will behave as a callback connector. Through the callback, the com-
posed resource will coordinate the invocation of components and will keep track of the
composition state through a new subordinated resource (/PO/{id}/stateN). This ap-
proach has the advantage that the callback resource’s states become visible for further
inspection and monitoring (state0, state1, state2). The initial state (state0) is cre-
ated through a POST message (3) as a side-effect of the redirection (303 See Other)
indicated by the composed resource (2, 3, 4). Messages include the callback connector
address in the Location header (/PO/{id}) indicating the step of the composition (2).

When the user agent fetches the state resource (5), it is redirected to invoke the com-
ponent resource (/products), including an extra header indicating the address of the
Callback connector (/PO/{id}/state1) (6). The connection with the composed resource
is closed, and the component is requested (7). The component resource responds with
the representation of the Products and the end-user selects the products he or she
needs. From that step forward, the conversation occurs between the user-agent and

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:11

Fig. 5. Decentralized implementation of the composed Commerce REST service.

the component, that is, the conversation occurs out-of-band regarding the flow con-
trolled by the composed resource (i.e., the composed resource does not intervene in
such conversation and has no access to the information interchanged between the par-
ties). The component service logic may require direct communication with the user
possibly through alternative protocols (e.g., email) or transport channels (8).

Seconds, minutes, or days later, when the response is available, the component re-
source invokes the callback and delivers the response. For instance, if the interaction
occurred through HTTP, the component resource could respond with a redirect mes-
sage indicating the address of the callback component (9). The callback address refers
to the expected state of the subordinated resource once the component finishes its job.
In that case a PUT message is sent to the callback carrying on the component response
(e.g., the chosen product list) (10).

This approach has a significant disadvantage. The component resource needs to
know that it is part of a composition and needs to store the callback address in or-
der to provide a final response, which increases the coupling between component and
composed resources. An alternative strategy that reduces coupling is applied when in-
teracting with the second component (11 to 16). In this case, we exploit user agent’s
capability to store state information. That is, instead of issuing a redirection, the com-
posed service issues a 200 message, including the location of the component-service to
invoke (e.g., a Bank transaction) and the callback address. It also includes the neces-
sary parameters to proceed with the payment process (e.g., the amount to pay) (11),
however in this case, the user agent will store the callback address and proceed with
the payment transaction by performing a POST request (12).

Since the resource ignores that it is part of a composition, it eventually issues a 200
message with the final response (14). Notice that in this case, the user agent has no

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:12 J. Bellido et al.

way to differentiate the final answer among the various 200 messages it could receive
during a rich interaction with the Transaction resource, so that if additional interac-
tion with the end user is required, it shall occur as an out-of-band conversation (13)
with additional resources (e.g., resource R). Once the final response is received (14) and
using the locally stored callback, the user agent moves the received final response to
the composed resource through a PUT message (15). Unlike message 10, there is no
need for an end-user confirmation in this step, since the request is not issued as a con-
sequence of a 303 redirection. Once the whole process is finished, the composed service
(PO/{id}) marks its process as finished and responds with a representation of its final
state (16).

3.2. State Handling for Composed RESTful Services

Key architectural properties of REST are high scalability and performance, and
one way to achieve these properties is through the statelessness constraint, that is,
requests from clients should contain all the information necessary for the server to
process the request; hence, session state (also known as application state) is stored en-
tirely at the client side instead of being shared also on the server side. This constraint
makes it possible for the server to avoid keeping session state in memory after a re-
sponse has been sent back to the client, which for the case of long-running business
processes may imply days, months, or years.

Concerning RESTful service composition, there are various ways in which applica-
tion state has been handled. The simplest way is for the user agent to request instruc-
tions from the composed resource in order to execute a business process specification
entirely on the client side, considering also the locally stored application state (Figures
6(a1) and 6(a2)). Instructions can be provided through generic scripting languages,
such as javascript, or even through specialized languages on service composition, such
as BPEL. This approach guarantees statelessness and it is fully decentralized; how-
ever, there is no way to guarantee that the expected processing has taken place, and
there is no way to enforce that the business process is correctly executed with un-
trusted user agents.

The symmetric alternative is to run the process completely on the server side and
return the results only once the process has completed. The client remains blocked
with an open connection to the server for the whole duration of the process, making this
solution not suitable for long-running processes. An alternative is to expose the state of
the running process instance (Figures 6(b1) and 6(b2)) through a specialized resource
on the server side (e.g., /PO/{id}) that stores the state of the business process for each
user agent that executes a business process. This way, it is also possible to inspect the
state of the business process at any time (Figures 6(b3) and 6(b4)). This approach has
been successfully used in JOpera [Pautasso 2009a]. It guarantees the enforcement of
business processes and favors reusability of composed resources; however, the server
must manage the state of each running process instance, compromising the scalability
of the composed resource.

We can improve this approach by breaking down the composed resource into frag-
ments representing the various steps or intermediary states (e.g., /PO/{id}/stateN) of
a business process (Figure 6(c3)). This strategy could facilitate inspecting the business
process (e.g., determining at which step some instances failed or stopped working) and
to balance the load (e.g., some responses could be cached or moved to specialized plat-
form, etc.) and improve performance. This approach, however, is still stateful, since a
resource (e.g., PO/{id}) is created for each instance of the business process.

A fully stateless solution can be achieved by mixing the first and previous ap-
proaches (a), (c). That is, a business process is broken down into fragments repre-
senting intermediary states of a business process and control logic is centralized in

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:13

Fig. 6. Four strategies for handling application state on the client (a), (d) and on the server (b), (c) side.

the composed resource. Servers, however, do not store the state of the process instance
(i.e., there is no need for a dedicated resource such as PO/{id}) but redirect user agents
to obtain state information from third parties (Figure 6(d2)) in order to implement
a step in the business process. The redirection message includes the address of the
service component (Location header), the address of the next step of the business pro-
cess (Callback header), information related to service component interface (i.e., pa-
rameters, HTTP method, payload format, URI scheme, etc.), and additional state (e.g.,
a hash number), or simple control patterns (e.g., a condition to be evaluated on the
client-side).

Following redirection instructions, the user agent fetches the component service’s
state and aggregates such information to any other state information previously ob-
tained from the composed service. The user agent then sends back the aggregated
state to the callback as instructed (Figure 6(d3)). Servers, on the other hand, process
the aggregated state according to the business rules corresponding to each specific
state. Naturally, state information shall be encoded in a way that servers can process
it, and content negotiation headers can be exploited to indicate encoding preferences.
More redirection instruction could be issued by the servers if required (Figure 6(d4)).

Under this approach, responsibilities are shared by user agents and origin servers,
state information is kept entirely on the client side so that servers remain stateless and
highly scalable, whereas the logic of the business process is kept on the server, making
it possible to enforce its correct execution. Naturally, we assume that user agents are
well-behaved and will follow redirections as instructed. For the case of malicious user
agents, mechanisms such as a digested signature of state information can be sent to
the client side in order to verify whether user agents are behaving correctly, but not all
properties can be protected with this technique. We discuss such limitations for each
of the control-flow patterns presented in Section 4.

3.3. Rationale for Our Approach

The redirection code (303) was designed to inform the user agent it must fetch another
resource, and it is widely used for services to interact with other services and accom-
plish business goals. For example, OAuth and OpenID are popular authorization and
identity protocols implemented using redirection codes; payment entities which offer

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:14 J. Bellido et al.

online transactions are also implemented using redirections codes in order to allow e-
commerce applications to sell products online in a security context under their control.

Due to constraints on the 303 redirection code, it cannot support complex interac-
tion successfully. For instance, parameters should be serialized in a text format and
concatenated to the URI (application/x-www-form-urlencoded), and information that
cannot be serialized as plain text cannot be passed between applications in the URI
parameters (e.g., images, pdf documents, etc). The resulting URI must not exceed the
limit established by the server, otherwise the server should return a 414 Request-URI
Too Long status code message. In order to send large quantities of data, the media
type multipart/form-data and the POST method shall be used for submitting forms
that contain files, non-ASCII data, and binary data. In addition, only the GET HTTP
method can be used to automatically fetch the redirected URI, but as seen in our
example, applications may be required to interact with each other using additional
methods without requiring end-user confirmation (e.g., POST and PUT messages 3 and
10 in Figure 5).

More importantly, control flow may be more complex than sequential invocation of
REST resources. Business processes also require parallel or alternative invocation as
well as determining the conditions for choosing the right response; more complex con-
trol flows consider the invocation of two services in non-established order but only one
at a time (unordered sequence), or service invocation for a determined number of times
iterator.

Finally, notice that the composed REST service (PO and /stateN resources) encapsu-
lates the knowledge about which services to invoke (URI), which parameters or state
information should be sent and be expected to be received, which methods shall be used
(e.g., GET (7) or POST (12) in Figure 5), as well as the order of the invocation, that is,
they must know the service interface of the resource, which in our case is accomplished
through ReLL.

4. CONTROL-FLOW PATTERNS

In the context of stateless, decentralized compositions of services described with ReLL
and with the assumption that clients can process the Callback link header, in this
section, we model control-flow patterns for RESTful service composition and the HTTP
protocol. The set of patterns includes sequence, unordered sequence invocation, alter-
native, iteration, parallel, discriminator, and selection [Russell et al. 2006; van der
Aalst et al. 2003].

4.1. Sequence, Unordered Sequence

The sequence pattern is a basic control-flow structure used to define consecutive invo-
cations of services which are executed one after the other without any guard condition
associated. As seen in Figure 5, this pattern could be implemented using the 303 redi-
rection code; however, only automatic redirection of GET messages are allowed by the
standard, making it difficult to update the composed resource state (i.e., PUT message
of Lines 5, 9). In addition, there is no clear indication on how to handle the payload of
the message. We extend the status codes with a set of codes identified with a two-digit
prefix: 31x. The sequence pattern is implemented with a new code: 311 (Sequence)
indicating the invocation of a service without any guard condition (see Figure 7).

The server responds with a 311 message including the component resource address
(2, 6) in a Link header as well as the HTTP method in a link target attribute, and
a Callback address in an additional header indicating the state of the composition.
Additional information, such as state (e.g., a digested value) and, depending on the
service interface, data formats or URI schemes to create the request, can be included in
the payload. Actual data values for such templates shall be provided by the user agent

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:15

Fig. 7. A sequence control-flow pattern implemented for REST and HTTP.

either by requesting them to the user through an appropriate interface or retrieving
them from the local storage. Such process is out of the scope of this proposal. The server
may close the connection with the client after issuing a 311 message unless metadata
indicating otherwise is included. When a user agent receives this code, it must store
locally the callback address and automatically request the component resource using
the indicated method (3), (7). Similarly to Figure 5, if additional communication shall
occur between the component resource and the user agent, it must be modeled as out-
of-band communication and is omitted for readability. When the response is available,
the component replies with a 200 status code. The composed service shall not issue
another request until the response has been passed by the user agent through a PUT
message (5), then the composed service can proceed with the next component (6 to 9).

When all the components have been fetched (i.e., the final state of the sequence
has been reached), the response is provided with a 200 status code and the composed
service representation (10). Notice that the actual HTTP methods to be used when
invoking component services must be determined by the composed resource. In order
to know how to handle the resources, the composed service pre-fetches the component
services descriptors which detail the interface of a set of resources at domain-level;
the descriptors are themselves REST resources (Figure 8). This phase is omitted in
the figures detailing the remaining patterns for readability, although it is assumed it
takes place before invoking a component resource.

For the case of the unordered sequence pattern, it specifies the execution of two or
more services in any order but not concurrently (Figure 9). That is, given two services
S1 and S2, the services execution can result as S1 followed by S2 or S2 followed by
S1. Since the list of services to be invoked is known by the composed resource and
the order is irrelevant, the composed resource (server) has the information to decide
which service to invoke as part of its own logic. For the user agent, all that matters is

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:16 J. Bellido et al.

Fig. 8. ReLL descriptors are fetched considering the root resource of a service.

Fig. 9. Unordered sequence.

the address of a particular component resource to be invoked as well as the method;
that is, this case is not different than a sequential invocation.

4.2. Alternative, Exclusive Choice

The alternative pattern is a basic control-flow structure that allows the execution of
only one of two possible services. The service to be executed could depend on the out-
come of preceding service execution, values of the parameters, or a user decision. The
312 (Alternative) status code is proposed for this pattern. When a composed service
requires executing one of two services, it responds to the client request with a 312
coded message, indicating the list of services to choose as Link headers, including the
HTTP method as an attribute, and a Callback header indicating the connector state to
resume interaction. The message payload is a conditional expression to be evaluated
by the user agent, as well as information required to build proper request messages
(i.e., data formats or URI schemes).

The composed resource closes the connection after issuing the response unless other-
wise indicated by additional headers. Link services may differ on the resources (URIs)
or the methods to be used (Figure 10, message 2). Since in REST, user agents keep
application-state information [Zuzak et al. 2011], they shall have enough information
to perform the evaluation. A good practice is to express the condition in languages
well known to the Web, such as XPath, although its format escapes the scope of this
proposal. Once the user agent has evaluated the condition it determines which link to
follow (4) or (6). Again, additional communication may occur between a user agent and
an origin server. Eventually when the component has a final response, it issues a 200
coded response, including its state in the payload (5) or (7). This causes the user agent
to send an update message (PUT) to the composed resource carrying on the received
payload (8). Once the interaction finishes, the composed resource replies with a 200
message including the representation of its final state (9).

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:17

Fig. 10. An alternate control-flow pattern implemented for REST and HTTP.

4.3. Iteration, Structured Loop - while Variant

This pattern is an advanced control-flow structure that allows the execution of a ser-
vice repeatedly, the number of times depending on a fixed number, a time frame, etc.
which can be modeled by a conditional expression. We propose the 313 (Iteration)
status code for representing iterations.

This interaction begins when the composed resource issues a 313 message
(Figure 11, message 2), including a Link header with the address of the component
resource, a Callback header indicating the callback connector state address, a condi-
tional expression, and additional information to create the message request as part
of the payload. After evaluating the conditional expression (3) and obtaining positive
results, the message is redirected to the component resource using the indicated op-
eration and payload (4). Communication between client and server may include sev-
eral messages interchanged. When a response is available, the component resource
will issue a 200 message (5). The condition will then be evaluated again. If it still
holds, the component is invoked again (4); or a PUT message is sent to the callback ad-
dress carrying along the response content served by the component service aggregated
with previous state information (6). Finally, at the end of the interaction, the compo-
nent replies with a 200 message and the representation of the composed resource final
state (7).

4.4. Parallel Split - Synchronization, Structured Discriminator, Structured Partial Join, Local
Synchronization Merge (Selection)

The Parallel Split is a simple pattern that allows a single thread of execution to be
split into two or more branches invoking services concurrently. The parallel split pat-
tern can be paired with either one of four advanced control-flow structures. Under the
paradigm of a composed service-component services, it is the former which determines
whether it waits for all the responses (Synchronization, Figure 12(a)), just one of them

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:18 J. Bellido et al.

Fig. 11. An iterator control-flow pattern implemented for REST and HTTP.

(Structured Discriminator, Figure 12(b)), or a fixed number (Structured Partial Join,
Figure 12(c)). Finally, for the case of Local Synchronization Merge (also called Selec-
tion, Figure 12(d)), the composed service shall wait for a number of responses that
cannot be determined with local information.

In order to avoid violating the REST stateless principle, servers do not store infor-
mation about how many answers are expected per client but make explicit server’s
expectancies through the pattern status codes, 314 Synch (Synchronization), 315
Discriminate (Structured discriminator), 316 PartialJoin (Structured Partial Join),
and 317 Selection (Local Synchronization Merge). The four patterns follow the same
conversational structure; however, the client’s decision to inform the server about the
availability of a final response is affected by the corresponding pattern.

Figure 12 shows the details for the pattern. Interaction starts when the composed
resource issues either a 314, 315, 316, or 317 message (Figure 12, message 2). The
message includes a list of Link headers annotated with a method attribute, a Callback
header indicating the callback connector state address, and a payload with instructions
to format input data for the operations according service interface. It may also include
state information, such as the number of expected service components to be addressed
by the client for the case of the 316 Partial Join pattern.

For the case of a 317 Selection message, a conditional expression must be included.
The condition must be evaluated considering application-state information stored lo-
cally at the client side (3), and the result shall be the number of request messages the
client must issue to service components.

Once the user agent determines how many responses to provide to the composed
resource (all, one, n out of m, or n), it invokes all the service components indicated
in the list with the appropriate methods concurrently (4, 6). In practice, the number
of links to be fetched is limited by the number of concurrent connections the client is
able to maintain with the servers involved. Again, there may occur several messages
interchanged between clients and origin servers as an out-of-band conversation, but
once the final response is available, it is aggregated until the number of responses
expected to be sent to the composed service is reached. The aggregated state is sent as

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:19

Fig. 12. A parallel control-flow pattern implemented for REST and HTTP.

a 200 coded request (8). The composed resource processes the aggregated state (e.g., it
could merge the results) and issues a 200 coded response with the final state.

5. IMPLEMENTATION

The e-commerce scenario depicted in Figure 3 was implemented on a Node.JS server
extended to make use of the HTTP status codes we have previously described. That is,
the five RESTful Web services components were developed corresponding to the OAuth
Provider, Seller, two Banks, an Email Sender, and a Delivery Service, as well as the
composed service, which is the Commerce service.

The Commerce service execution comprises six steps. During the first two steps,
the user chooses products to buy and gets authenticated. Both steps are executed
one after the other, implementing the sequence control-flow pattern. Message inter-
actions between user agent and composite service are shown in the following snippet
log. The services were developed using the RESTify framework,1 and the client was

1http://mcavage.github.com/node-restify/

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:20 J. Bellido et al.

implemented using the basic HTTP client library of Node.JS. We now present snippets
of the messages interchanged between client and server at each step.

Step 1
Request:

POST /commerce HTTP /1.1
Content -type: json

Response :
311 Sequence
Link: </seller/products >; method="GET"
Callback : /commerce /state1

<Out of band interaction between the end user and the Seller
service >

Step 2.
Request:

PUT /commerce/state1 HTTP /1.1
Content -type: json
[Chosen products]

Response :
311 Sequence
Link: </OAuthProvider >; method=" POST"
Callback : /commerce /state2
[API key]

<Out of band interaction between the end user and the OAuth
Provider , as a result , the client will obtain a request token >

To calculate the total due on the purchase order, it is necessary to execute the task of
consulting for the price of each item repeatedly. The third step of the business process
execution is implemented using the iterator control flow pattern. Interaction messages
showing implementation of iteration control flow pattern are shown in the following
fragment.

Step 3.
Request:

PUT /commerce/state2 HTTP /1.1
Content -type: json
[Request token , chosen products]

Response :
313 Iteration
Link: </seller/prices >; method="GET"
Callback : /commerce /state3
[Conditional expression written in JavaScript]

<User agent asks prices while the conditional expression evaluates
positively (i.e., for each product)>

Request:
GET /seller/prices HTTP /1.1
Content -type: json
[Chosen products]

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:21

Response :
200 OK
[Price , seller details]

Once the prices of all products to buy are calculated, the Commerce Service offers
users a set of supported payment options. The alternative control-flow pattern allows
the user to choose only one of the payment options presented as shown in the following
snippet.

Step 4.
Request:

PUT /commerce /state3 HTTP /1.1
Content -type: json

[Final products list price , seller details]

Response :
312 Alternative
Link: </bank 1>; method="GET",

</bank 2>; method="GET"
Callback : /commerce/state4
[Conditional expression written in JavaScript]
[Payment details]

<Local evaluation of the condition in order to select the bank
(e.g. bank 1) and out of band interaction between the end user
and Bank services >

If payment for products to buy was successful, the next step is to send an email back
to the buyer and generate a delivery order simultaneously. The parallel control flow
pattern allows the execution of many tasks concurrently. Implementation details of
this pattern are shown in the following snippet.

Step 5.
Request:

PUT /commerce /state4 HTTP /1.1
Content -type: json
[Payment results , Chosen products]

Response :
317 Selection
Link: </emailSender >;method=" POST",

</deliveryService >; method=" POST"
Callback : /commerce/state5
[Conditional expression written in JavaScript]
[Purchase order , email details , delivery details]

<Two request messages are send concurrently to the Email and
Delivery services , as instructed >

Request:
POST / emailSender HTTP /1.1
Content -type: json
[Purchase order , email details]

Request:
POST / deliveryService HTTP /1.1
Content -type: json

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:22 J. Bellido et al.

[Purchase order , delivery details]

Response :
200 OK
[Mailing confirmation]

Response :
200 OK
[Delivery dispatch confirmation]

<Conditional expression is evaluated locally , on the client -side ,
until the result is positive (e.g., the confirmation of the
Delivery dispatch is received)>

Finally, when completing the execution of the composite service process, the com-
posed service returns the representation of its current state. For example, it could be
an identification of the transaction for future reference (e.g., customer service). This
content depends on the composed service logic.

Step 6.
Request:

PUT /commerce/state5 HTTP /1.1
Content -type: json
[Purchase Order , mailing details and confirmation , delivery

details and confirmation]
Response :

200 OK
[Tracking number]

6. EVALUATION

The quality of service attributes (QoS) of the overall composition depend not only on
the component services QoS, but also on the control-flow pattern involved in the com-
position [Canfora et al. 2005]. Each control-flow pattern can be modeled with a finite
state machine representing the execution paths (Figure 13).

For the case of the sequence pattern, a single path of execution is followed (i.e., the
sequential invocation of component services). Similarly, the path of execution for an
iteration control-flow pattern consists on the sequential invocation of a service as many
times as required. The alternative control pattern requires to evaluate its condition
(which takes a relatively insignificant time when compared to the time it takes to
invoke a service). Finally, the parallel control-flow pattern causes multiple concurrent
service invocations [Alrifai and Risse 2009; Zeng et al. 2004].

In addition, QoS has been determined mainly by evaluating variables such as price,
response time or duration, reputation, performance or success rate, and availability,
among others. Composed services QoS is measured using aggregation functions on the
QoS of the component services [Alrifai and Risse 2009]. In Zeng et al. [2004] aggrega-
tion functions for each control-flow pattern are defined based on the critical execution
path of the composed service, that is, for the worst possible cases. Control-flow pat-
terns such as iteration, alternative, and parallelism can be reduced or transformed to
a sequence model [Alrifai and Risse 2009; Cardosoet al. 2004].

In the rest of this section, we will provide an evaluation of the proposed approach
(decentralized vs. centralized service composition) considering only the sequential
control-flow pattern (i.e., the worst case). We implemented nine composed services
invoking two to ten service components. Each service component takes 1,000 ms
(1 second) execution time and supports up to 600 clients concurrently connected.

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:23

Fig. 13. Execution path and critical path for each control-flow pattern.

The service component has a processing capacity (throughput) of 600req/sec, an av-
erage response time of 1,000ms, and 100% availability when the demand or workload
(workload) is less than or equal to the processing capacity of the service component
(600req/sec).

Both decentralized and centralized scenarios are compared in terms of availability,
response time, and throughput. For the purpose of analyzing the scalability of compos-
ite services, we assigned the resources so that each composite service can serve up to
100 clients at a time and can keep requests waiting in a queue of 100 clients (maxi-
mum size), that is, when the server is at is maximum capacity (limit), it can receive
up to 200 clients. The clients arriving when the server is at it limit will cause a service
denied response (e.g., 429 - too many requests). As described before, we implemented
services with Node.js and performed the workload test using JMeter [Halili 2008].

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:24 J. Bellido et al.

Fig. 14. Response time.

6.1. Response Time

The response time is the time it takes to send a request from the client and receiving
a response from the service. Figure 14 shows a comparison of the composed service re-
sponse time under a centralized versus a decentralized approach. In both cases, if the
composed service workload (w) is equal to or less than the service processing capacity
(in our example w ≤ 100req/sec), then the response time corresponds to the sum of
each component service response time. The figure shows the results where a composi-
tion includes n = 2...10 component services. As can be observed, when the workload
exceeds the composed service capacity, the composed service response time increases
exponentially up to the limit of the service (in our example L = 200req/sec) and then
the service fail requests (e.g. responds with a 404 Not found message). However, due
to the stateless nature of the decentralized approach (i.e., no sessions are kept alive on
the server side), the increase in the response time after reaching the service limit is
much lower for the decentralized approach compared to the centralized scenario. The
difference may seem marginal, however, the availability analysis demonstrates that
the centralized approach presents a significantly higher rate of failed requests so that
the decentralized approach maintains a reasonable response time while processing
(not failing) a significantly higher number of requests.

6.2. Availability

Service availability is a proportion between the number of successful service invocation
versus the total service invocation received by a server. A service invocation is success-
ful if a response annotated with a 2xx or 3xx status code is produced on the service
side and received by a client. Figure 15 analyzes the composed service availability for
both approaches in various scenarios, where the composed service includes n = 2...10
component services. Under the centralized approach, availability decreases regardless
of the number of component services (again the service limit L = 200 req/sec). Under
the decentralized approach, however, the number of failed requests is significantly less
in comparison considering the same service limit and number of components.

6.3. Throughput

Service throughput is the amount of workload (request in this case) that the service
can process in a unit of time. Figure 16 shows the throughput for both approaches
with a configuration similar to the previous cases (n = 2...10 service components). In
both approaches, the composed service throughput decreases if the number of service

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:25

Fig. 15. Availability.

Fig. 16. Throughput.

components increases. However, a significant difference can be seen in the decentral-
ized approach that is able to process more requests per second, whereas the central-
ized approach reaches a limit (failed requests) when the workload exceeds the service
limit. The decentralized throughput rate overcomes the centralized approach for each
scenario.

7. DISCUSSION

7.1. Impact on REST Architectural Properties

The REST architecture style yields to applications (e.g., the Web), nonfunctional prop-
erties like openness, extensibility, high scalability [Taylor et al. 2009], performance,
simplicity, modifiability, visibility, portability, and reliability [Fielding 2000].

7.1.1. Openness, Modifiability, and Extensibility. An open software architecture is charac-
terized as having a stable abstract representation (system model) as a core while
allowing third-party developers to evolve independently the application. This may
cause changes on the system model and the application itself; these must be validated
against the semantics of the system model [Oreizy 2000]. Architectural components
have different mechanisms of extensibility and modifiability, and by satisfying the lay-
ered system constraint as well as the uniform interface, they are required to bound
responsibilities, changes and complexity to the corresponding layers and components.

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:26 J. Bellido et al.

For instance, methods and control data on HTTP messages must allow architectural
components (e.g., intermediaries such as proxies) to handle messages properly with-
out requiring additional semantics, information, or parsing the message content. Our
approach relies on HTTP extensibility mechanisms (status codes) and the definition
of a new media-type, the ReLL descriptor, without requiring special handling of mes-
sages from intermediaries or old clients, and allowing both mechanisms to be further
extended.

In addition, user agents can receive code on demand, extending clients’ functional-
ity dynamically (e.g., a script or an applet). In a centralized implementation of service
composition (Figure 4), this extensibility is lost as resources are fetched by an inter-
mediary that has no use for scripts, css, or applets. In a decentralized implementation
(Figure 5), out-of-band interaction between the end user and the component service
may occur, taking advantage of extensible components (scripts, applets, css).

7.1.2. High Scalability and Performance. Statelessness, understood in REST as the lack of
records of client-server interaction or sessions on the server side (application state), is
an important property that allows the server to deallocate resources (memory, connec-
tions) used in responding to a client’s request. It fosters the server’s high scalability of
concurrent requests, provided that the messages contain all the necessary information
for servers to respond properly.

In a centralized implementation, the composed service behaves as a client of com-
ponent resources and hence keeps the record of interactions on its side; however, it
behaves as a server for end users consuming the composed resource and hence violates
the statelessness principle of REST. In a decentralized implementation, the composed
service does not store state information but pushes it forward it to the end-user client,
keeping the composed resource stateless.

A common practice to ensure higher levels of scalability for servers is to balance
the load of requests among a cluster of servers. For a centralized implementation, the
composed service is responsible for performing the load balancing task to the local
cluster. For the case of a decentralized implementation, the request load is naturally
distributed among the various response providers (components).

In addition, for the case of REST, intermediaries may also perform partial processing
of requests only if requests are self-contained or context-free. Hence, despite messages
that can be longer in size, the information can be replicated or cached across a set of
intermediaries (proxies and gateways), increasing the system performance and robust-
ness. Caching is one of the key features of REST that allows applications to be highly
scalable.

7.2. Backwards Compatibility

In this article, we have proposed an extension of HTTP status codes to support basic
and complex control-flow patterns that are widely known in the traditional Web ser-
vices composition field. Our decision does not introduce additional components to the
Web but exploits existent extension mechanisms of HTTP, making it possible for exis-
tent components (clients, servers, and intermediaries) to graciously fail when receiving
one of the proposed messages (i.e., treat them as a standard 300 status code) and for
compliant components to enable long-running business processes on the Web.

Current definition of the 303 status code does not allow for the specification of com-
plex control flow. Furthermore, since the semantics of such status code differs from
the intention of the patterns presented in Section 4, we believe that the definition of
new codes for each pattern allows advanced architectural components more control
in the way they handle the messages. Thus, basic control-flow patterns can be imple-
mented using new HTTP redirection codes that give enough information to advanced

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:27

user agents to interpret and perform the patterns. This approach allows the imple-
mentation of complex workflows. Currently, protocols such as OAuth2 and OpenID3

are implemented using the 303 redirection code, which forces developers to define cum-
bersome APIs hard to code and understand, where information is mashed in the pa-
rameters in an ad-hoc fashion (e.g., callback URIs, chains of callback URIs, security
keys, signatures, etc.), causing leakage of information and introducing security risks.

In our approach, servers know explicitly that they are part of a flow that potentially
involves other origin servers outside their domain so they must be careful with their re-
sponses. Since flows may cross various domains, our proposal violates the cross-origin
policy in those cases so that the rules for processing each message shall be imple-
mented in specialized browsers (otherwise, it will be treated as a simple redirection).

In addition, malicious user agents or clients may ignore information, such as con-
ditional expressions or component addresses, and attempt to move tampered states
to the composed service. To avoid such situations, component services descriptions
(i.e., ReLL) shall include ways to validate the response provided by the components
(e.g., an XML schema, message signature, digested values, etc.), but ultimately, it
is the responsibility of the service components and the composed service to imple-
ment the required business rules and validation mechanisms to accept or not accept
a response.

8. CONCLUSION

In this article, we have implemented control flows through callbacks and redirections.
Our approach allows composed resources to delegate control flow to various services
so that they become available to respond to newer messages. When the response to
the delegated message is available, services will wake up the composed resource at the
corresponding state in the execution flow.4 In the evaluation section, we can observe
that our decentralized approach allows composed services significant improvements
in availability and throughput, whereas response time remains stable, demonstrat-
ing that decentralized service composition favors scalability. In addition, by exploiting
REST nature, it is possible to implement long-running business processes that may
take days, months, or years for completion without consuming resources on the server
side (i.e., stateful), which favors scalability and evolvability.

Current development on service composition follows a centralized, stateful approach.
RESTful service composition is a recent area of research that basically follows a simi-
lar tendency, violating REST principles. The consequences are a loss on nonfunctional
properties, such as scalability, among others, which has been fundamental for the rich-
ness that the Web platform currently offers. A fully RESTful approach has proven elu-
sive. Naturally, there are various options and trade-offs for designing such a kind of
composed services. Our approach is fully RESTful compliant and focuses on extending
the uniform interface, hence evolving HTTP in a way that requires minimal changes to
current standards. Our approach balances composition responsibilities between clients
and servers fostering the massive scalability that is akin to the Web and also allows
the presented control-flow patterns to be regulated by current standards bodies so that
thick client implementation could be normed and certified.

This article does not discuss how the composed service knows which component
to invoke or which control-flow pattern shall be used to perform the invocation.
Naturally, this information can be hardcoded in the composed service logic, and

2http://OAuth.net/
3http://OpenID.net/
4http://composedservice/state

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:28 J. Bellido et al.

probably some assistance could be provided for developers to create the service. Our
approach also relies on a middle ground, where a service descriptor provides enough
information for a client to make assumptions, discover new services, and choose which
path to follow. There are several ways to describe REST services (e.g., WSDL 2.0,
WADL, ReLL), but ReLL is the only descriptor that allows the extraction of data in
resource representation dynamically; such data can be used to evaluate conditions and
routing some control-flow patterns so that it is not required that the user agent know
before hand the service descriptors, as depicted in Figure 8; they could be fetched on a
need basis.

In order to perform workflows on the Web, it is necessary to allow the execution of
services in different ways, for example, parallel, alternative, iteration, etc., and not
only in sequence. There are other control-flow patterns commonly used in business
process modeling, which we believe could be successfully addressed by implementing
the patterns presented in this article. Further research is needed to model more dy-
namic aspects of control-flow patterns, which include features like dynamic routing,
events, and a dynamic discovering of REST services.

In Alrifai et al. [2012] complex workflow patterns for WSDL/SOAP-based services
(sequential, iteration, parallel, and conditional) are analyzed in order to implement
centralized, QoS-aware service composition. It is clear that each workflow pattern has
different consequences on the QoS attributes analyzed (e.g., performance, availability,
and scalability), being the centralized composite service a bottleneck for the provision
of such QoS attributes. As for future work, we are focusing on developing analytical
models to perform a similar analysis in order to determine the impact of our fully
decentralized approach on such QoS attributes for each control-flow pattern.

REFERENCES

Alarcón, R. and Wilde, E. 2010. RESTler: Crawling RESTful services. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW’10). ACM, New York, NY, 1051–1052.

Alarcón, R., Wilde, E., and Bellido, J. 2010. Hypermedia-driven RESTful service composition. In Proceed-
ings of the 6th Workshop on Engineering Service-Oriented Applications (WESOA’10). Lecture Notes in
Computer Science, vol. 6568, Springer, Berlin, Heidelberg, 111–120.

Alrifai, M. and Risse, T. 2009. Combining global optimization with local selection for efficient QoS-aware
service composition. In Proceedings of the 18th International Conference on World Wide Web (WWW’09).
ACM, New York, NY, 881–890.

Alrifai, M., Risse, T., and Nejdl, W. 2012. A hybrid approach for efficient Web service composition with end-
to-end QoS constraints. Trans. Web 6, 2, 7:1–7:31.

Beckett, D. and McBride, B. 2004. RDF/XML syntax specification (revised).
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

Bellido, J., Alarcon, R., and Sepulveda, C. 2011. Web linking-based protocols for guiding RESTful M2M
interaction. In Proceedings of the 3rd International Workshop on Lightweight Composition on the Web
(ComposableWeb’11). Lecture Notes in Computer Science, vol. 7059, Springer, Berlin, Heidelberg, 74–85.

Benatallah, B., Sheng, Q. Z., and Dumas, M. 2003. The self-serv environment for Web services composition.
IEEE Int. Comput. 7, 40–48.

Canfora, G., Di Penta, M., Esposito, R., and Villani, M. L. 2005. QoS-aware replanning of composite Web ser-
vices. In Proceedings of the IEEE International Conference on Web Services (ICWS’05). IEEE Computer
Society, 121–129.

Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut, K. 2004. Quality of service for workflows and Web
service processes. Web Semantics: Sci. Serv. Agents WWW 1, 3, 281–308.

Chinnici, R., Moreau, J., Ryman, A., and Weerawarana, S. 2009. Web services description language (WSDL)
version 2.0, part 1: Core language, W3C recommendation, 16 June 2007.

Dayal, U., Hsu, M., and Ladin, R. 2001. Business process coordination: State of the art, trends, and open
issues. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB’01),
P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass Eds., Morgan
Kaufmann, San Francisco, CA, 3–13.

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

Control-Flow Patterns for Decentralized RESTful Service Composition 5:29

Decker, G., Lüders, A., Overdick, H., Schlichting, K., and Weske, M. 2009. RESTful petri net execution. In
Proceedings of the International Workshop on Web Services and Formal Methods, R. Bruni and K. Wolf
Eds., Lecture Notes in Computer Science, vol. 5387, Springer-Verlag, Berlin, Heidelberg, 73–87.

Fielding, R. T. 2000. Architectural styles and the design of network-based software architectures. Ph.D.
dissertation, University of California, Irvine.

Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk Nielsen, H., Masinter, L., Leach, P. J., and Berners-Lee, T.
1999. Hypertext transfer protocol — HTTP/1.1. Internet RFC 2616.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Hadley, M. 2009. Web application description language (WADL). World Wide Web Consortium, Member
Submission SUBM-wadl-20090831.

Halili, E. H. 2008. Apache JMeter: A Practical Beginner’s Guide to Automated Testing and Performance
Measurement for Your Websites. Packt Publishing Ltd, Birmingham, U.K.

Hamadi, R. and Benatallah, B. 2003. A petri net-based model for Web service composition. In Proceedings
of the 14th Australasian Database Conference (ADC’03), K.-D. Schewe and X. Zhou Eds., Conferences in
Research and Practice in Information Technology, vol. 17. ACS, Adelaide, Australia, 191–200.

He, J., Zhang, Y., Huang, G., and Cao, J. 2012. A smart Web service based on the context of things. ACM
Trans. Internet Technol. (TOIT) 11, 3, 13:1–13:23.

Hernández, A. G. and Garcı́a, M. N. M. 2010. A formal definition of restful semantic Web services. In Pro-
ceedings of the 1st International Workshop on RESTful Design (WS-REST’10), C. Pautasso, E. Wilde,
and A. Marinos Eds., ACM, New York, NY, 39–45.

Mitra, N. and Lafon, Y. 2010. SOAP version 1.2 part 0: Primer. W3C Recommendation.
http://www.W3C.org/TR/soap1/part0/. 27 April 2007.

Narayanan, S., Marucheck, A. S., and Handfield, R. B. 2009. Electronic data interchange: Research review
and future directions. Decision Sci. 40, 1, 121–163.

Nierstrasz, O. and Meijler, T. D. 1995. Requirements for a composition language. In Object-Based Models
and Languages for Concurrent Systems. Lecture Notes in Computer Science, vol. 924, Springer, Berlin
Heidelberg, 147–161.

Nottingham, M. 2010. Web linking. Internet RFC 5988. http://www.ietf.org/rfc/rfc5988.txt.
Oreizy, P. 2000. Open architecture software: A flexible approach to decentralized software evolution. Ph.D.

dissertation, University of California, Irvine.
Pautasso, C. 2009a. Composing RESTful services with JOpera. In Proceedings of the 8th International Sym-

posium on Software Composition, A. Bergel and J. Fabry Eds., Lecture Notes in Computer Science,
vol. 5634. Springer-Verlag, Berlin, Heidelberg, 142–159.

Pautasso, C. 2009b. On composing RESTful services. In Software Service Engineering, F. Leymann, T. Shan,
W.-J. van den Heuvel, and O. Zimmermann Eds., Number 09021 in Dagstuhl Seminar Proceedings.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

Pautasso, C. 2009c. RESTful Web service composition with BPEL for REST. Data Knowl. Eng. 68, 9,
851–866.

Pautasso, C. and Wilde, E. 2009. Why is the Web loosely coupled?: A multi-faceted metric for service design.
In Proceedings of the 18th International Conference on World Wide Web (WWW’09). ACM, New York, NY,
911–920.

Peltz, C. 2003. Web services orchestration and choreography. Computer 36, 10, 46–52.
Richardson, L. and Ruby, S. 2007. RESTful Web Services. O’Reilly & Associates, Sebastopol, CA.
Rosenberg, F., Curbera, F., Duftler, M. J., and Khalaf, R. 2008. Composing RESTful services and collaborative

workflows: A lightweight approach. IEEE Internet Comput. 12, 5, 24–31.
Russell, N., ter Hofstede, A. H. M., van der Aalst, W. M. P., and Mulyar, N. 2006. Workflow control-flow

patterns: A revised view. Tech. rep. BPM-06-22. BPMcenter.org.
Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009. Software Architecture: Foundations, Theory, and

Practice 1st Ed. John Wiley & Sons, Hoboken, NJ.
van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P. 2003. Workflow patterns.

Distrib. Parallel Datab. 14, 1, 5–51.
Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J. G., and Van de Walle, R. 2012. Functional

descriptions as the bridge between hypermedia APIs and the Semantic Web. In Proceedings of the 3rd
International Workshop on RESTful Design (WS-REST’12). ACM, New York, NY, 33–40.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., and Chang, H. 2004. QoS-aware mid-
dleware for Web services composition. IEEE Trans. Softw. Eng. 30, 5, 311–327.

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

�

�

�

�

�

�

�

�

5:30 J. Bellido et al.

Zhao, X., Liu, E., and Clapworthy, G. 2011. A two-stage restful Web service composition method based on
linear logic. In Proceedings of the 9th IEEE European Conference on Web Services (ECOWS). IEEE
Computer Society, 39–46.

Zuzak, I., Budiselic, I., and Delac, G. 2011. A finite-state machine approach for modeling and analyzing
RESTful systems. Web Eng. 10, 4, 353–390.

Received September 2012; revised March 2013, August 2013; accepted October 2013

ACM Transactions on the Web, Vol. 8, No. 1, Article 5, Publication date: December 2013.

