
A Pattern Language for RESTful Conversations
CESARE PAUTASSO and ANA IVANCHIKJ, USI, Lugano, Switzerland
SILVIA SCHREIER, innoQ Deutschland GmbH, Monheim, Germany

As a good user interface design is important for the success of an app, so is a good API for the success of a Web service.
Within the RESTful Web services community there is a need for a systematic approach in knowledge sharing, for which patterns

are particularly suitable. Using a RESTful service to achieve a certain goal often requires multiple client-server interactions, i.e.,

to have a conversation. While patterns of such RESTful conversations can be uncovered from existing APIs’ usage scenarios, or
the service engineering literature, they have never been gathered in a pattern language, nor properly visualized with a Domain

Specific Modeling Language (DSML). These patterns provide valuable input for API designers, as well as API consumers, by

establishing a common vocabulary to describe recurring conversations. To do so, this paper uses RESTalk, a DSML, to model
the basic RESTful conversation patterns structured around the life cycle of a resource (create, discover, read, edit, delete,

protect) by showing the corresponding sequences of HTTP request-response interactions. We show how the resulting pattern

language can be applied to individual resources, or also collections of resources.

CCS Concepts: •Software and its engineering → Design languages;
Additional Key Words and Phrases: RESTful Web services, conversation patterns, pattern language, RESTalk, conversation

composition

ACM Reference Format:
Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pattern Language for RESTful Conversations. EuroPLoP’16 , ,
Article (), 22 pages.
DOI: http://dx.doi.org/10.1145/3011784.3011788

1. INTRODUCTION

Web services and Web applications have enabled systems to communicate and exchange data over
the network by exposing Application Programming Interfaces (APIs). Web service repositories are
witnessing rapid growth in the number of registered APIs. For instance, the Programmable Web1

repository, founded in 2005, grew to 2,418 APIs by the end of 2010 and currently lists 14,495 APIs,
most of which claim to use the REpresentation State Transfer (REST) architectural style [Fielding
2000]. Using Web services requires interacting and exchanging multiple messages with them, as part
of Web service conversations [Benatallah et al. 2004]. When such interactions comprise sequences of
HTTP request-response messages, we describe them as RESTful conversations [Haupt et al. 2015].

1http://www.programmableweb.com

Author’s address: Cesare Pautasso; e-mail: c.pautasso@ieee.org; Ana Ivanchikj; e-mail: ana.ivanchikj@usi.ch; Silvia Schreier;
e-mail: silvia.schreier@innoq.com
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
EuroPLoP ’16, July 06 - 10, 2016, Kaufbeuren, Germany
ACM 978-1-4503-4074-8/16/07. . . $15.00
DOI :http : //dx.doi.org/10.1145/3011784.3011788

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:2 • C. Pautasso, A. Ivanchikj and S. Schreier

The simplicity and standardization of the HTTP protocol allows for very trivial conversations which
can be limited to single interactions. However, by studying and implementing RESTful Web services,
we have noticed that for addressing some non-functional requirements (e.g., security, reliability, scal-
ability), developers often combine several HTTP interactions, as part of conversations. Redirection is
a very simple example of such a conversation, implemented in many development frameworks and
libraries (e.g., Express.js, Play). By naming, describing, and visualizing these conversation patterns,
we capture the corresponding design knowledge with the intention of fostering patterns’ widespread
reuse as the means to abstract the complexity of longer conversations.

Therefore, in this paper, we propose a pattern language for modeling basic RESTful conversation pat-
terns: abstract templates for simple, often recurring, conversations between one client and one REST-
ful API. These patterns do not only capture the intent of the conversation, but also precisely define
all possible interactions that may occur [Hohpe and Woolf 2004]. For similar intents (e.g., the reliable
creation of a resource, or exchanging credentials to grant access to a protected resource) it is possible to
choose among alternative conversation patterns. The pattern language we propose is organized follow-
ing the life cycle of resources: creation, discovery, editing and protection. The basic patterns include:
POST Once Exactly (POE), POST-PUT Creation, Long Running Operation with Polling, Server-side
Redirection with Status Codes, Client-side Navigation following Hyperlinks, Incremental Collection
Traversal, (Partial) Resource Editing, Conditional Update for Large Resources, Basic Resource Au-
thentication, and Cookies-based Authentication. To visualize them we use RESTalk, an extension to
the Business Process Model and Notation (BPMN) Choreography diagrams [Weske 2012, Chap. 5],
which we have proposed in [Pautasso et al. 2015], in order to emphasize details that are found when
using the HTTP protocol to interact with RESTful Web APIs. These include, but are not limited to,
hypermedia controls [Amundsen 2011], headers and status codes.

The rest of this paper is structured as follows. In Section 2, we define the main facets of RESTful
conversations, while in Section 3 we present the notation we use for modeling them. In Section 4,
we define the pattern language by modeling and describing: the resource creation patterns [4.1], the
resource discovery patterns [4.2], the resource editing patterns [4.3], and the resource protection pat-
terns [4.4]. We survey related work in Section 5, while in Section 6 we conclude the paper.

2. RESTFUL CONVERSATIONS

RESTful conversations are heavily affected by the REST architectural style constraints, i.e., client-
server, statelessness, uniform interface, cacheable, layered system, and code on demand [Fielding
2000]. The statelessness and uniform interface constraints particularly influence the client-server com-
munication encapsulated in RESTful conversations.

The statelessness principle requires clients requests to be self-contained, so that the server does not
need to remember previous interactions. This implies that every interaction is always initiated by the
client, who sends a new request whenever it is ready to advance in the state of the conversation. The
client starts the conversation aiming at a certain goal and it can end it at any time by simply not
sending further requests. However, the responsibility for steering conversation’s direction does not lie
solely with the client. Namely, the server determines which links to related resources to send, if any,
depending on requested resource’s state. No link is sent if the request is not authorized, or if there are
no links to discover (e.g., after a DELETE request). The client decides whether and which hyperlink(s)
to follow. Hyperlinks refer to Uniform Resource Identifiers (URIs) which are used to uniquely identify
resources. These references can be annotated with the link relation or other constructs to label its
semantics.

HATEOAS (Hypermedia As The Engine of Application State), as part of the uniform interface con-
straint, requires the client to be unaware of URIs structure. All the client needs to know is the entry
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :3

URI, while all subsequent URIs are discovered dynamically during the conversation. Thus, the client is
decoupled from the server which prevents the client from breaking with application’s evolution [Liskin
et al. 2011].

Given the synchronous nature of RESTful interactions, requests are always followed by a response.
Only in case of failures, when the server is unavailable or the request message gets lost, the client
might resend the request after a given timeout. When resending requests, the idempotency of the
HTTP method is important. In this context idempotency means that sending the same idempotent
request multiple times to the same resource should have the same effect as sending it only once, as-
suming no other interactions with the resource have taken please between the requests. If the resent
request is not idempotent, e.g., a POST request, the design of the API and the client need to enable
them to deal with the consequences of such an action. On the other hand, resources bare no conse-
quences from resending idempotent requests [Fielding and Reschke 2014], e.g., GET, PUT, DELETE.

An example could be a REST API for a simple to-do list allowing the client to create new lists and
add or remove items to these lists. The RESTful conversation typically starts with the client accessing
the start resource of the service, i.e., sending a GET request at http://your-to-do-list.org, for instance.
In the response the client can find links to its already existing lists, like /list/1 regarding work or /list/2
regarding personal tasks, as well as a link to a resource, e.g., /list, for creating a new list.

The client can now decide to access one of the existing resources using a GET request, or to create a
new one. In the latter case the client would send a POST request to /list with the name of the new list,
e.g., volunteer, as content of the request body. Since POST is not an idempotent verb, resending the
POST request multiple times would result with the creation of multiple new lists with the same name
if the design of the API is not robust enough to detect and handle such cases. Once the server creates
the list, it would send a 201 Created response with a Location link header referring to /list/3.

If the client wants to access the new list it can easily follow this link using a GET request which
would respond in a 200 OK with the content of the new to-do list. However, this does not need to happen
immediately. The client could also pause the conversation for a longer period of time and access the new
volunteer list later, as the /list/3 location link contains all the necessary information to identify this
specific resource. Such property of the URI provides for the statelessness principle. Namely, there is no

Fig. 1: An example of a RESTful conversation
EuroPLoP’16, Vol. , No. , Article , Publication date: .

:4 • C. Pautasso, A. Ivanchikj and S. Schreier

need for the server to store something like a session, i.e., the state of this client-server-communication
since all required information is contained in the request sent by the client.

As all URIs, beside the first one, are provided in responses to previous requests, the client can dis-
cover the whole service by solely knowing the initial URI of the service. A visualization of an optional
conversation of the client and the server is illustrated in Fig. 1 where the request and response bodies
are left out for readability reasons. However, Fig. 1 only shows one possible direction of the conversa-
tion. The client can also decide to access its private or work list which would result with a different
set of interactions. Visualizing all of the possible conversation directions can be facilitated with the
notation we present in Section 3.

3. RESTALK MODELING LANGUAGE

To visually express the salient characteristics of RESTful conversations, in [Pautasso et al. 2015] we
have proposed RESTalk, a visual DSML, which derives its basic constructs from the BPMN Choreog-
raphy, adapting them where deemed necessary. RESTalk is being gradually improved [Ivanchikj 2016]
based on survey results [Ivanchikj et al. 2016] to ensure an appropriate trade-off between expressive-
ness and understandability.

Request

Response

Request

Hyperlink URI

Hyperlink URI

Alternative
Response

Alternative
Response

Exclusive XOR gateway

Inclusive OR gateway

Start event

End event

Sequence flow

Hyperlink flow

Client-Server
Interaction

Alternative Server Decisions

RESTalk

Parallel AND gateway

Response timeout

Fig. 2: Overview of RESTalk’s constructs

An overview of RESTalk’s constructs is provided in Fig. 2. The main construct is a two band request-
response element with embedded message content which depicts the client-server interaction. The
message content to be included in the model shall contain, but is not limited to, the following de-
tails: HTTP method, URI, response status code and, where applicable, links. The request-response
bands are always connected, except when the response can vary depending on server’s decision. A
start and an end event are used to depict the beginning and the end of the conversation, while the
timer event is used to model the response timeout due to server’s response taking too long, followed
by the client resending the request. The timer can only be used attached to the request band, since
it interrupts [Jordan and Evdemon 2011, pg.342] the normal request-response flow. In RESTalk, we
distinguish between two types of flows, a sequence flow and a hyperlink flow. While the sequence flow
shows the flow of the conversation, the hyperlink flow models URIs’ discovery and usage by the client.
The gateways are used to diverge or converge different plausible conversation paths. They can be of
different kind: parallel when concurrent paths are necessary, exclusive when only one of n paths is
possible, and inclusive when any combination of the paths can occur.

To provide for the understandability of diagrams represented using RESTalk, we have introduced
the following simplifications and abstractions.

(1) Although the client can end the conversation at any time, by simply not sending further requests,
we use end events to model only the paths that result in the success or failure of the initial intent
of the conversation.

EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :5

(2) We only show the hyperlink flow of the last received response, while in reality the link could have
been obtained earlier in the conversation as well.

(3) Due to the absence of consequences when resending idempotent requests, we only model the re-
sending of non-idempotent requests (POST, PATCH) without emphasizing the fact that the client
can eventually give up and stop resending the request.

(4) We also refrain from modeling alternative responses with 5xx status (server error) codes since they
can occur after any request.

4. RESTFUL CONVERSATIONS PATTERN LANGUAGE

Resources exposed as part of RESTful APIs are discovered by clients that interact with them over con-
versations, composed of sets of basic HTTP interactions, to achieve different goals, such as for example:
the (reliable) creation of additional resources, the discovery of related resources, the enumeration of
the items found within a collection. Given the goal of each conversation, the designer of the API chooses
the corresponding conversation patterns which form the basis for the API design. These patterns will

POST Once
Exactly [4.1.1]

POST-PUT
Creation [4.1.2]

(Partial) Resource
Editing [4.3.1]

Conditional Update for
Large Resources [4.3.2]

Long Running
Request [4.1.3]

Server-side Redirection
 with Status Codes [4.2.1]

Client-side Navigation
following Hyperlinks

[4.2.2]

Resource Collection
Traversal [4.2.3]

Basic Resource
Authentication

[4.4.1]

Form-based
Authentication

[4.4.2]

Collection Item
Life Cycle [5]

Resource Protection

Resource Life Cycle
Discovery & Navigation

Reliable Creation

if creation takes time

avoid duplicates

if all or some resources of the
conversation need to be protected

for browsers or adaptable login

for non-browser clients

can be used in parallel

extend with in case of large representations

avoid duplicates

based on

combine with to discover edit option

for long running
operations

if results can be
further processed

based on for
redirection to login

in case of
multiple
options

when jobs or results are
reorganized

based on

based on

if only one
alternative
or moving/

reorganizing

based on

in case of large representations

Fig. 3: Overview of the pattern language for RESTful conversations

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:6 • C. Pautasso, A. Ivanchikj and S. Schreier

thus help the client developer to understand API’s features and to build upon them clients that will
perform the complex conversation to achieve their goals.

For every pattern we present [Meszaros et al. 1998]: its name, a simple summary, the context to
be considered when selecting it, a brief discussion of the problem it addresses including the forces
that make it difficult, the corresponding solution modeled with RESTalk representing the conversa-
tion template and its consequences, as well as some examples of pattern’s known uses in practice.
Where applicable we also state possible variants of the pattern with high-level details of the possible
extensions. A summary of all the patterns that will be described in this paper as well as their mutual
relationships is provided in Fig. 3. The arrows in the figure illustrate how to navigate through the
system of patterns.

4.1 Resource Creation Patterns

While HTTP offers the POST and PUT methods for creating resources in a single request-response
round, the conversation patterns we present deal with resource creation under certain constraints or
failure scenarios.

4.1.1 POST Once Exactly

Summary: Prevent creation of duplicate resources in case of errors

Context: If a client wants to create a resource whose URI it does not know, it has to use a POST
request. If the response does not reach it, the client does not know if the server did not receive the
request, and thus the resource has not been created, or the resource has been created, but the response
got lost.

Problem: As all networks are not reliable, a client cannot know the reason for a missing response.
This is not a problem if the request was using an idempotent HTTP verb like GET, PUT or, DELETE.
However, if a client uses a POST request because it wants to create a resource whose URI will be
determined by the server, how can the creation be repeated without resulting in multiple resources
being created?

Forces: The semantics of the POST method as defined by the HTTP protocol does not provide any
guarantee in terms of safety or idempotency. Therefore the server must treat every POST request
as new one; it cannot decide whether it has already processed the same POST request before. Both
the client developers and the API developers need to come up with their own failure handling ap-
proach, as simply retrying POST requests would lead to unwanted side-effects. This pattern provides
an application-independent approach to enable the server to identify and filter duplicate POST re-
quests.

Solution: The server offers a resource where the client can retrieve a token, i.e., a unique target
URI, for its request. As this unique URI is used when making the POST request, the server can check
whether the corresponding resource already exists. The resource will only get created if this URI has
not been used for a POST request before, otherwise, the server will respond with a message that
the requested action is not allowed for this resource. If the server takes too long to reply, the client
can decide to repeat the request without being exposed to the risk of creating the resource twice. The
response to the POST request can either be received directly (200) or in case of duplicate requests (405),
and the client can fetch it with a GET on the same URI. A visualization of the solution is provided in
Fig. 4.

Consequences: Benefits: No Duplicate Resources. In case of failures, clients can retry the POST
request as many times as necessary. The unique URI prevents the server from creating the same
resource twice. This is achieved without introducing a special idempotent semantics to POST, but by
having the server only allow the first POST request to be processed.
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :7

GET /token

204 No Content
Cache-Control: no-cache
Link: /link?poe=X; rel=poe

POST /link?poe=X
<content>

200 OK
<response>

405 Method Not Allowed

GET /link?poe=X

200 OK
<response>

Fig. 4: POST Once Exactly

Liabilities: Duplicate Request Filtering. The server needs to be responsible for creating unique URIs,
and ensuring that they are used only once.

Lost Response Recovery. In case the response to the first POST request is lost, the server needs to
allow the client to retrieve it using a GET on the same unique URI. Depending on the size of the
response, this puts an additional burden on the server resources and will require to determine for how
long the response should be kept. See the “Long Running Operation with Polling” [4.1.3] pattern for a
possible solution to let the client clean up the results of a long running request.

Variants: This pattern can also be applied if a POST is not directly used for creating a resource,
but for executing any non-idempotent operation. In this case also the POST request within the “Long
Running Operation with Polling” [4.1.3] pattern could be a candidate for applying this pattern.

If the token URI retrieved from the initial GET shall not be the URI of the created resource the first
POST would return a 201 Created with a “Location” header targeting to the new resource. Instead of
a 405 as response to a repeated POST there would be a 302 Found with “Location” header possible as
well or a 405 and the GET to the token URI would then return the 302. This variant has the advantage
that the token URI is decoupled from the URI of the created resource.

Known uses: This pattern is based on the combination of two recipes from the RESTful Cook-
book: ”How to make POST requests conditional” [Allamaraju 2010, Chap. 10.8] and “How to generate
one-time URIs” [Allamaraju 2010, Chap. 10.9]. The term POST Once Exactly (POE) was proposed
in [Nottingham 2005] which is not using a POE link relation, but specific headers instead.

4.1.2 POST-PUT Creation

Summary: Prevent creation of duplicate resources in case of errors

The POST-PUT Creation pattern shares the context with, and addresses the same problem as the
“POST Once Exactly” [4.1.1] pattern. Nonetheless we repeat them here as well to make the pattern
description self-contained.

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:8 • C. Pautasso, A. Ivanchikj and S. Schreier

Context: If a client wants to create a resource whose URI it does not know, it has to use a POST
request. If the response does not reach it, the client does not know if the server did not receive the
request, and thus the resource has not been created, or the resource has been created, but the response
got lost.

Problem: As all networks are not reliable, a client cannot know the reason for a missing response.
This is not a problem if the request was using an idempotent HTTP verb like GET, PUT or, DELETE.
However, if a client uses a POST request because it wants to create a resource whose URI will be
determined by the server, how can the creation be repeated without resulting in multiple resources
being created?

Forces: The creation of the resource consists of the technical part where a new identifier is chosen
and the part where all kinds of consequences and side-effects related to the application domain are
executed. While resource identifiers are relatively inexpensive to mint, it often turns out that the
application domain logic triggered by resource creation should not be executed multiple times.

Solution: To use the POST-PUT Creation conversation pattern, it should be possible to distinguish
between the technical creation, i.e. the creation of a new URI, and the execution of the application
domain specific creation behavior. The resource creation is split into two steps, the technical creation
of its identifier and the actions that are required by the application domain. So the client sends first
an empty POST request, which results in the creation of an empty resource resulting in no side-effect
relevant for the application domain. Server’s response contains a link to the URI of the created empty
resource to which the client can add domain-specific content using a PUT request. The first PUT
request will then trigger the consequences of the creation in the domain. Since the PUT is idempotent,
resending it multiple times will not have side effects. A visualization of the solution is provided in
Fig. 5.

POST /resource
<empty>

201 Created
Location: /resource/X

PUT /resource/X
<content>

200 OK

Fig. 5: POST-PUT Creation

Consequences: Benefits: Simplified garbage collection. The created resources have no content and
their creation only has technical side-effects. The resources are not initialized until the PUT request
is received, thus the server can be set to destroy the empty resources at certain intervals.

Idempotent initialization. After the client receives the resource identifier, the actual initialization of
the resource is carried out using an idempotent PUT request.

Liabilities: Duplicate empty resources. This solution does not prevent from duplicate resources being
created and thus may consume the set of available resource identifiers.
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :9

Variants: To enable the server to identify that the PUT request is used for creation and not for a
normal update of the resource an “If-None-Match” header with a * as value can be added to the PUT
request.

This pattern can also be applied when a POST request is not used for creation but for performing
any non-idempotent operation.

Known uses: The DayTrader REST API2 uses this pattern.

4.1.3 Long Running Operation with Polling

Summary: Use polling to avoid client timeouts when waiting long running operation results

Context: Processing complex or data intensive operations (e.g., big data processing, back-up jobs)
might require a long time.

Problem: How can a client retrieve the result of such an operation without keeping the HTTP con-
nection open for a too long time? Especially, as there normally will be a timeout for HTTP connections
because every open connection allocates a certain amount of memory at the server and the client. How
can we avoid wasting resources for open connections and for computations whose result will not be
received by the client in case of a timeout?

Forces: As the network is not reliable, the client may loose the connection before the server has
completed processing the result. The longer the server takes to respond to the client, the higher the
chances that the client may no longer be available to receive the result or interested to retrieve it.
The server may need to perform expensive computations to process client requests and these would
be repeated every time the client resends the request in case the connection on the previous one is
dropped. Performing computations and delivering their results are two concerns that make completely
different demands on the server infrastructure.

Solution: The long running operation itself is turned into a resource, created using the original
request with a response telling the client where to find the results. These will be available once the
operation running in the background completes. The client may poll the resource to GET its current
progress, and will eventually be redirected to another resource representing the result, once the long
running operation has completed. Since the output has its own URI, it becomes possible to GET it
multiple times, as long as it has not been deleted. Additionally, the long running operation can be
cancelled with a DELETE request, thus implicitly stopping the operation on the server, or deleting
its output if it had already completed in the meanwhile. A visualization of the solution is provided in
Fig. 6.

Consequences: Benefits: Scalability. The client does not need to keep the connection open with the
server for the entire duration of the request. This has a positive impact on the number of clients that
the server can handle concurrently.

Shareable results. The link to the result can be shared among multiple clients that can retrieve it
without needing the server to recompute it again for each client.

Request cancellation. An explicit mechanism consistent with the REST uniform interface is provided
for cancelling requests and thus avoiding to waste server resources to perform computations whose
results the client is no longer interested in.

Liabilities: Polling. The client needs to implement polling, which if done too frequently, may put an
additional burden on the server and consume unnecessary bandwidth. To mitigate this problem, it is
possible that the server can provide the client with progress information while it is polling so that the
number of GET requests can be reduced.

2http://bitworking.org/news/201/RESTify-DayTrader#orders-should-be-reliable

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:10 • C. Pautasso, A. Ivanchikj and S. Schreier

POST /job

202 Accepted
Location: /job/42

DELETE /job/42/output

200 OK

DELETE /job/42

200 OK

GET /job/42

200 OK 303 See Other
Location: /job/42/output

GET /job/42/output

200 OK

Fig. 6: Long Running Operation with Polling [Pautasso et al. 2015]

Server storage consumption. Depending on the type and size of the result, storage space will be
consumed if clients forget to delete the job results and these are not deleted automatically after a
certain period of time.

Privacy. Everyone who knows the link to a result resource can access the result. If the information
are confidential the result resources and perhaps also the creation can be protected by “Basic Resource
Authentication” [4.4.1] or “Cookies-based Authentication” [4.4.2].

Variants: To avoid polling, the client could become a server as well if possible, providing a callback
link when starting the job, indicating where it wants to be notified when the result is available. Queu-
ing requests, processing them and delivering the corresponding results may be assigned to separate
physical servers, so that the polling by a large number of clients can be directed to a dedicated server.

If the first step of this conversations needs to be reliable in case of lost responses, and to avoid creat-
ing the same job multiple times, this pattern can be combined with the “POST Once Exactly” [4.1.1] or
the “POST-PUT Creation” [4.1.2] pattern where the job is started with the POST or the PUT respec-
tively.

Known uses: The AWS Glacier REST API3 as well as an API for handling Virtual Machines [Szy-
manski and Schreier 2012, Sec. 4.1.3] use this pattern.

3http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html

EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :11

4.2 Resource Discovery Patterns

The HATEOAS constraint, mentioned in Section 2, promotes the design of APIs featuring a single
entry point URI, and the dynamic resource discovery based on hypermedia. However, the entry point
URI might not lead directly to the resource needed by the client, due to access rights, or the resource
being moved to a different location, or the resource being part of a collection of resources. The following
patterns help to discover resources in such situations.

4.2.1 Server-side Redirection with Status Codes

Summary: Decouple clients from evolving resource locations

Context: Services may evolve over time and therefore a resource’s location may change.
Problem: A client may store a resource’s URI whenever it wants to and may use it to further interact

with the service at any time. If the resource’s location has changed, how can the server inform the client
about this change?

Forces: As services are evolving, the original URI of the resources they offer might change thus
breaking existing clients. To avoid breaking clients, it should still be possible to access the resource
with the original URI after the service has evolved. Due to the stateless constraint of REST, servers
do not keep track of their clients and – as mentioned before – with HTTP, servers cannot initiate an
interaction with their clients. Thus it is necessary to inform the client about the new location of a
moved resource when the client is sending a request about it.

Solution: If a client accesses a resource with an outdated URI the server answers with a 3xx redi-
rection status code usually in combination with a “Location” header to guide the client to the new
URI. The client is then responsible for using this URI depending on the status code specification. A
visualization of the solution is provided in Fig. 7.

GET /resource

303 See Other
Location: /other

GET /other

200 OK

Fig. 7: Server-side Redirection with Status Codes

Consequences: Benefits: Loose coupling. Servers can evolve their RESTful API independently of
clients. Clients do not break as long as servers keep a mapping between old and new resources.

Performance. If clients are redirected towards servers that are located closer to them, the latency of
subsequent interactions may be reduced.

Liabilities: Client complexity. Client implementation becomes more complex as clients need to un-
derstand and react to the different semantics of all redirection status codes, which in principle can
occur with any request.

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:12 • C. Pautasso, A. Ivanchikj and S. Schreier

Performance. As opposed to directly accessing an already known resource with one request, one or
more redirection rounds will be needed for the client to reach the dynamically discovered resource,
thus increasing the latency.

Variants: Depending on the reason for redirection, e.g., a permanent move of a resource, other 3xx
status codes can be used by the server. In case of a resource which has not been moved but is no
longer available a 410 Gone may be used as well. In this case the client would know that no further
interaction is possible, i.e., the conversation would not have a second step. Such redirection can also
be used when the server wants to redirect the client based on its abilities or location to another server,
e.g., for load balancing. This pattern is not only applicable in case of GET request but for other HTTP
verbs as well. Depending on the status code, the second step in the communication will stay a GET or
will be the same as in the first step.

Known uses: A typical use case are home documents of RESTful APIs [Nottingham 2013]. Another
example is google.com that redirects the client based on its location to a country specific domain. They
also use a redirect to route the client to HTTPS resources instead of HTTP ones. A common use case
in web applications is the ”POST-Redirect-GET” or “Redirect after POST” pattern used to avoid a
repeated form submission when reloading the browser [Tilkov et al. 2015].

4.2.2 Client-side Navigation following Hyperlinks

Summary: Allow clients to choose from different navigation alternatives

Context: Some client’s requests are related to multiple different resources, only some or all of which
may need to be accessed by the client.

Problem: How shall a client know about its current options or related information without hard-
coding the URI patterns for the service’s resources?

Forces: Hard-coding the URI patterns of all resources in the client violates the HATEOAS con-
straint. The client needs to dynamically discover related resources and alternatives for changing the
application state during its navigation. The coupling between the client and server is loosened if the
client is guided by the server in its navigation. So the server for each client request decides which
alternatives to change the application state are applicable and which other resources could be relevant
in the context of the request. Additionally, to enable the independent evolution of the server (which
may need to be relocated or split into multiple ones), the client should not hard-code the URI patterns
of all resources it is expected to interact with.

Solution: The server provides all hyperlinks related to the requested resource such that the client
can decide to follow one or more of the provided links, as depicted by the inclusive gateway in Fig. 8.
It is important to note that, in addition to continuing with a GET request to a linked resource, other
HTTP verbs can be used as well, depending on the semantics of the link relation and the intention
of the client, e.g., like used in the “(Partial) Resource Editing” [4.3.1] pattern. A visualization of the
solution is provided in Fig. 8.

Consequences: Benefits: Loose coupling. Depending on the hyperlinks contained in the response
the server can inform the client about its current alternatives. The client does not need to know the
URI pattern of any resource, but needs to understand the meaning of the link relations.

Liabilities: Client complexity. The decision on which link(s) should be followed was traditionally
made by the users navigating the Web using their browsers. When automating the navigation process,
clients need to be designed to understand link relation semantics and avoid making assumptions on
the order in which links with a certain semantics will be discovered. Regarding stability, a client should
always ignore links with an unknown link relation.
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :13

GET /resource

200 OK
Link: /resource1; rel="related"
Link: /resource2; rel="related"

GET /resource1

200 OK

GET /resource2

200 OK

Fig. 8: Client-side Navigation following Hyperlinks

Performance. If discovered links cannot be cached or bookmarked, it is likely that every time a client
begins a new conversation with the server it will do so from the root resource by retrieving the home
document of the RESTful API. Additional interactions will be thus needed to discover the actual re-
sources needed to achieve the goal of the conversation.

Variants: The hyperlinks of related resources can be sent along as metadata (e.g., Link headers) or
embedded in the resource representation (using an appropriate hypermedia format).

Known uses: This pattern is often used when selecting the language of a website4 or deciding which
search results to look up. Filling in a registration form for a new account on GitHub and sending it
to the URI contained in the HTML form5. This pattern is also used by the “Incremental Collection
Traversal” [4.2.3] pattern.

4.2.3 Incremental Collection Traversal

Summary: Use hypermedia to incrementally discover large collections

Context: To facilitate resource discovery, resources are often grouped in collections. The client
should be able to access all items in a given collection.

Problem: How can a client find a specific resource in a collection if it only knows the URI of the
collection? How can a client incrementally retrieve all elements in a collection?

Forces: A collection representation might become too big to send all of its items listed in one re-
sponse. Not all clients are interested, or able to retrieve the complete collection at once. Clients may
discover links to individual collection elements and would need to navigate to other elements of the
same collection. A contra-indication concerns the need of some clients to retrieve a consistent snap-
shot of the entire collection content. This would not be possible using multiple requests because other
clients may be modifying the collection concurrently.

Solution: When a client requests the first item in a collection, the server provides links to the next
and the last item as well. Each following response to a GET request on a specific item in the collection,
makes it possible for the client to select whether it wants to follow the link to the first, the previous,
the next, or the last item, thus enabling it to gradually discover the collection by always following the

4http://ec.europa.eu/
5https://github.com/join

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:14 • C. Pautasso, A. Ivanchikj and S. Schreier

link to the next item, or by moving back and forth using the provided links. To trade-off the size of
each response against the number of interactions needed to traverse the collection, the right level of
granularity needs to be determined, which can range from single items to pages (or groups) of multiple
ones.

A visualization of the solution is provided in Fig. 9. In order not to hinder the readability of the
diagram, we have omitted the hyperlink flows which can easily be inferred from the sequence flows.
This solution is based on the “Client-side Navigation following Hyperlinks” [4.2.2] pattern.

GET /first

200 OK
Link: /next1; rel="next"
Link: /first; rel="first"
Link: /last; rel="last"

GET /next1

200 OK
Link: /next2; rel="next"
Link: /first; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

GET /next2

200 OK
Link: /last; rel="next"
Link: /next1; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

GET /last
200 OK
Link: /next2; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

Fig. 9: Traversals of a collection resource with four items (Example of the “Incremental Collection Traversal” [4.2.3] conversation
pattern)

Consequences: Benefits: Reduced bandwidth consumption. Clients can avoid downloading large
responses and can incrementally retrieve the content of a large collection.
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :15

Liabilities: Complete retrieval overhead. Completely enumerating the content of the entire collection
will require a request-response interaction for every item. Grouping items into pages may help to
alleviate the issue.

Concurrent changes. Concurrent changes to the collection may not always be reflected in the re-
sponses retrieved during the traversal. One solution for missing changes especially in combination
with caching has been proposed with Atom Tombstones6.

Known uses: This pattern is often used when traversing large collections (Google search results,
blog post archive) is described in the Atom Publishing Protocol [Gregorio and de hÓra 2007, Sec. 10.1].
Another example is the PayPal REST API7 where pagination is available by item position and also
by date ranges. Client user interfaces may initially display a few items of a collection and fetch the
additional elements only if the user is about to scroll past the end of the visible items. When requesting
all events in a Cronofy calendar pagination is used8.

4.3 Resource Editing Patterns

The read-only Web is long gone and editing resources has become a common operation which can be
performed using the patterns discussed below.

4.3.1 (Partial) Resource Editing

Summary: Use hypermedia to let the client discover how to update existing resources

Context: Clients need to change the state of a given resource, but do not know how to represent the
information in the update message.

Problem: Typically a client can try to update a resource by sending a PUT request to the resource’s
URI, but sometimes the client needs additional information. For example, how can a client know which
elements of the resource are editable, or which values are valid for a specific data element?

Forces: Not all resources published within a RESTful API can be edited at all times, or not all the
attributes of a resource can be edited, thus clients should be made aware of the editable resources and
their corresponding attributes, e.g., with an HTML form. It might be too costly to override all resource’s
attributes when just a small update is needed.

Solution: When responding to a GET request on an existing resource, the server provides a link to a
page with a form representing all the editable content of the requested resource. The client can decide
to update such content using a PUT request, thus overwriting the entire content of the resource, or
using a PATCH request, thus sending an incremental update. A visualization of the solution is provided
in Fig. 10.

Consequences: The granularity of the resource and the suitability for the client’s use cases influ-
ences the efficiency of updates. If the resources have large representations, the client needs to send
many unnecessary data, and if the resources are too small it needs to send multiple requests. There-
fore, it might help to provide multiple overlapping resources to provide suitable granularity for the
typical use cases. Most of these drawbacks are only valid for using PUT, which however has the ad-
vantage of being idempotent. Using PATCH (not idempotent) would reduce the amount of data, but
requires to find a suitable media type, like JSON Patch [Bryan and Nottingham 2013] or JSON Merge
Patch [Hoffman and Snell 2014] to describe the partial update. In case of failures or timeouts, PUT
requests can be directly retried, while the PATCH request would be resent only after the latest state

6https://tools.ietf.org/html/rfc6721
7https://developer.paypal.com/docs/api/
8https://www.cronofy.com/developers/api/#read-events

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:16 • C. Pautasso, A. Ivanchikj and S. Schreier

GET /resource

200 OK
Link: /resource/edit; rel=edit

GET /resource/edit

200 OK
Link: /resource

PUT /resource

200 OK

PATCH /resource

200 OK

Fig. 10: (Partial) Resource Editing

of the resource is retrieved again with a GET. In case of large updates this pattern can be combined
with the “Conditional Update for Large Resources” [4.3.2] pattern.

Benefits: Loose coupling. The server can provide clients with information on what resource attributes
can be edited. Clients do not need to be built making strong assumptions on how to edit a resource.

Idempotent updates. The PUT request used to perform a complete update at the end of the conver-
sation is idempotent.

Liabilities: Resource schema. A well-defined, possibly standardized, schema description of how the
client can edit the resource is required as part of the response retrieved with the GET /edit request.

Non-idempotent partial updates. The PATCH request used to perform a partial update at the end of
the conversation is not idempotent.

Variants: This pattern can be extended with versioning metadata so that conflicting concurrent
edits can be detected by the resource. If the anticipated client is a Web browser, the PUT or PATCH
can be replaced by a POST, because HTML forms support GET and POST only. An additional method
override form parameter can be sent to specify which of the PUT or PATCH method should be used.
The same can be applied to resource deletion.

Known uses: This pattern is described in the “How to Use AtomPub for Feed and Entry Resources”
recipe of the RESTful Cookbook [Allamaraju 2010, Chap. 6.4]. It is also used by the Ruby on Rails
framework9.

4.3.2 Conditional Update for Large Resources

Summary: Declare client expectations to validate if intended resource update is possible

Context: Updates of certain resources might require sending a lot of data, which could be repre-
sented in an incompatible format or simply too large for the server to process.

Problem: How can a client avoid sending a large representation which cannot be processed by the
server?

Forces: Sending large files can be pricey in terms of bandwidth and/or response time and might
potentially lead to a network/connection error. If the client is not sure about the size limit imposed by
the server, if any, or about the accepted media types or authorization requirements, sending a large
file, which will eventually be rejected, would result in wasted resources.

9http://guides.rubyonrails.org/getting started.html#updating-articles

EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :17

Solution: Before sending the actual data, the client sends an empty body with an “Expect” and
“Content-Length”, or “Content-Type” or “Accept” header, which the server uses to control the appro-
priateness of the request to be sent. If the request is appropriate, evidenced by a 100 Continue server
response, the client makes a PUT request with the same headers, except the “Expect” header, and the
actual content. If retrieving another 4xx status code, the client can try with another content length or
media type, suitable authorization, or end the conversation. A visualization of the solution is provided
in Fig. 11.

PUT /resource
Expect: 100-continue
Content-Lenght: 9999
Content-Type: json
<empty>

100 Continue

PUT /resource
Content-Length:
Content-Type:
<content>

200 OK

413 Request Entity Too Large 415 Unsupported Media Type

PUT /resource
Expect: 100-continue
Content-Lenght: 1000
Content-Type: json
<empty>

PUT /resource
Expect: 100-continue
Content-Lenght: 9999
Content-Type: xml
<empty>

Fig. 11: Conditional Update for Large Resources

Consequences: Benefits: Efficiency. This pattern can avoid sending large representations, which
are too large to be processed by the server, and can therefore save bandwidth and processing resources
on the server. But at the same time it requires a conversation instead of a single update request. This
pattern can be combined with the “(Partial) Resource Editing” [4.3.1] pattern.

Liabilities: HTTP/1.1 support required. As this feature is not supported in HTTP/1.0, the inbound
server needs to support HTTP/1.1; otherwise the client would retrieve a 417 Expectation Failed status
code which would mean it should send the original request without the “Expect” header and would not
be able to take advantage of the conditional update.

Increased response time. This conversation introduces an additional roundtrip which can be avoided
if enough bandwidth and server capacity is available and an out-of-band agreement on the accepted
representation media type has been established between the client and the server.

Known uses: This conversation is described as Look Before You Leap in the “RESTful Web Services”
book [Richardson and Ruby 2007, Chap.8] and used in the Amazon S3 API10.

4.4 Resource Protection Patterns

Depending on the resource’s content, some or all of the CRUD (Create, Read, Update, Delete) opera-
tions might be available only to a restricted group of clients. Client’s access rights can be controlled
using different patterns, including the ones presented below.

10http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:18 • C. Pautasso, A. Ivanchikj and S. Schreier

4.4.1 Basic Resource Authentication

Summary: Limit access to authenticated and authorized users with basic HTTP authentication

Context: Access to certain resources needs to be limited only to authenticated and authorized clients
due to confidentiality or integrity requirements.

Problem: How can the server inform the client that it needs to authenticate before it can access the
resource if the resource shall not be accessible for every client?

Forces: The server needs to control the access rights of each client who sends a request. The inter-
action between the client and the server needs to be encrypted to prevent identity theft.

GET /resource

401 Unauthorized
WWW-Authenticate: ...

GET /resource
Authorization: ...

200 OK 401 Unauthorized
WWW-Authenticate: ...

403 Forbidden

Fig. 12: Basic Resource Authentication

Solution: When a client requests to access a protected resource the server replies with a 401 Unau-
thorized response thus challenging the client to provide authorization credentials. If the credentials
are valid, the client is granted access, otherwise, it is challenged to provide credentials again or to end
the conversation. Depending on the targeted clients this pattern can also be used in parallel with the
“Cookies-based Authentication” [4.4.2] pattern. This pattern is not only applicable to GET requests,
but to every other HTTP verb as well. In case of large representations “Conditional Update for Large
Resources” [4.3.2] can be considered. A visualization of the solution is provided in Fig. 12.

Consequences: Benefits: Simplicity. This is a simple solution for access control, which does not
require any login page or setting up cookies.

Liabilities: Security. While the identification data is encoded, it is not encrypted, thus limiting the
confidentiality protection when connected over HTTP and should therefore be used only with HTTPS.

Replay attacks. Replay attacks are possible if the attacker intercepts and resends request messages,
which for every interaction must carry the client credentials.

Statelessness. Since the client cannot explicitly log out, the server needs to provide an explicit mech-
anism for it to do so.
EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :19

Known uses: This pattern is based on the “How to Use Basic Authentication to Authenticate
Clients” recipe of the RESTful Cookbook [Allamaraju 2010, Chap. 12.1]. Also the JIRA REST API 11

and the Twilio API 12 are using this pattern.

4.4.2 Cookies-based Authentication

Summary: Limit access to authenticated and authorized users using Cookies

This pattern shares the context and addresses the same problem and forces as the “Basic Resource
Authentication” [4.4.1] pattern. Here we repeat them to make the pattern description self-constrained.

Context: Access to certain resources needs to be limited only to authenticated and authorized clients
due to confidentiality or integrity requirements.

Problem: How can the server inform the client that it needs to authenticate before it can access the
resource if the resource shall not be accessible for every client?

302 Found
Location: /login?r=/resource

GET /login?r=/resource

POST /login?r=/resource

302 Found
Location: /resource
Set-Cookie: auth

302 Found
Location: /login?r=/resource

GET /resource
Cookie: auth

403 Forbidden

GET /resource

200 OK
<form action="/login"
method="POST">

200 OK

Fig. 13: Cookies-based Authentication

Solution: After the initial request for accessing a protected resource, the server redirects the client
(see the “Server-side Redirection with Status Codes” [4.2.1] pattern) to a login page containing an
authentication form that the client needs to fill in. If the login data is valid, the client is redirected
to the initially requested resource and a cookie is set to be used in future requests, otherwise, it is

11https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis/jira-rest-api-tutorials/jira-rest-api-example-basic-authentication
12https://www.twilio.com/docs/api/rest/request

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:20 • C. Pautasso, A. Ivanchikj and S. Schreier

redirected back to the login page. Depending on the targeted clients this pattern can also be used in
parallel with the “Basic Resource Authentication” [4.4.1] pattern. A visualization of the solution is
provided in Fig. 13.

Consequences: Benefits: Session timeout. This pattern can overcome the logging-out issue encoun-
tered in the “Basic Resource Authentication” [4.4.1] pattern. If the server wants to provide a log out, it
can set the cookie to an empty value with expired validity.

Liabilities: Security. Since the confidentiality protection required by the cookie and the client cre-
dentials through plain HTTP is not guaranteed, this pattern should only be used with HTTPS as
well. Furthermore, the cookie should be protected from client-side modification or man-in-the-middle
tampering and replay attacks.

Redirect. This pattern works well when the original request has no body, e.g., GET, DELETE, or an
empty POST, because the body of the original request gets lost during the redirect.

Variants: The pattern can be extended to consider an initial interaction in which the client already
has a cookie. The cookie validity may have expired, in which case the same conversation would be used
to renew it. If a server does not want to tell the unauthorized client that the protected resource even
exists, it can also answer with a 404 Not Found status code.

Known uses: This pattern is based on the wide spread usage of cookie-based authentication [Tilkov
et al. 2015, Chap. 11.7], like in the GitHub web page13. GitHub answers with a 404 when accessing
a private repository, if the user is neither authenticated nor authorized, to avoid leaking information
about resource’s existence.

Also Known As: Form-based Authentication.

5. RELATED WORK

The first patterns in software engineering referred to human-computer interaction and user interface
design [Cunningham et al. 1987]. With the rise of Web services, the need for capturing system to sys-
tem interaction has emerged. Hohpe and Woolf present patterns for enterprise integration through
asynchronous messaging in [Hohpe and Woolf 2004]. They do not deal with using REST for enter-
prise integration. Daigneau’s patterns for Web service API design and implementation also deal with
REST-related aspects, such as the importance of the HATEOAS constraint in the “Linked service”
pattern [Daigneau 2011, p. 77]. However, he does not describe different interaction patterns that stem
from this constraint. Such patterns can be uncovered from the request-response messages used to solve
common RESTful design problems in [Allamaraju 2010; Richardson and Ruby 2007; Tilkov et al. 2015].
Darrel Miller14 also described a set of resource patterns (i.e., the bouncer, the factory, the bucket, the
miniput, the alias) which define the role of some of the resources involved in the interactions, captured
by the conversation patterns presented in this paper. These authors do not systematically explore all
possible alternative paths in the conversations, nor give a visual representation to the same.

In our previous work [Pautasso and Wilde 2010; Haupt et al. 2015] we have described several of the
RESTful conversation patterns included in this pattern language. However, due to the different focus
of those papers, the pattern description structure was not used, and the visual modeling, if any, was
based on UML Sequence diagrams. Thus, to the best of our knowledge, this paper represents the first
attempt to create a visual pattern language for RESTful conversations.

13https://github.com/login
14https://gooroo.io/g/darrelmiller

EuroPLoP’16, Vol. , No. , Article , Publication date: .

A Pattern Language for RESTful Conversations • :21

6. CONCLUSION

As the number of RESTful APIs is growing and software engineers are gaining experience in design-
ing them, it is important to capture and share that experience to foster APIs’ quality and usability.
Patterns have emerged as an efficient method for attaining that goal [Schmidt et al. 1996]. As one
product developer stated in a recent survey we have conducted: “REST APIs usually include trivial
conversation patterns. Regardless of their triviality, those should be explicitly noted in technical doc-
umentation. For high-level design that is intended to facilitate the design processes and possible con-
versations among different stakeholders, identifying conversation patterns can decrease unnecessary
information and thus prove time- and energy-saving”.

Extensive research has been done in REST API design principles and patterns, addressing important
structural and data representation problems to enhance the usability, scalability, and interoperability
of Web services. However, dynamic aspects, such as the representation of conversations, where multi-
ple HTTP request-response interactions are needed to achieve a goal, are not yet fully explored. In this
paper we have focused on how to visually model RESTful conversations between one client and one
server. Although visualization is considered an optional element in pattern description, it can signifi-
cantly help people in grasping complex problems. Thus, we have used RESTalk, our Domain Specific
Modeling Language (DSML) [Pautasso et al. 2015], to provide for the visualization of all the patterns
in the proposed pattern language.

The pattern language for RESTful conversations is structured around the life cycle of a resource,
i.e., its CRUD operations, which for protected resources, may require proper client authentication and
authorization. It provides a non exhaustive list of alternative solutions to simple common problems:
resource creation, discovery of related resources and resource collection traversal, as well as optimizing
the transfer of updates for editable resources. The basic conversation patterns can also be composed
into longer conversations, and thus provide useful abstractions to manage larger conversation’s com-
plexity. The RESTful conversations we have presented in this paper refer to one-to-one, client-server,
interactions. In the future we plan to extend RESTalk and the pattern language with multi-party
conversations.

7. ACKNOWLEDGEMENTS

We are grateful for the excellent shepherding by Uwe Zdun and for the constructive suggestions for
improvement by the EuroPLoP 2016 writers workshop participants.

REFERENCES

Subbu Allamaraju. 2010. RESTful web services cookbook: solutions for improving scalability and simplicity. O’Reilly Media.
Mike Amundsen. 2011. Building Hypermedia APIs with HTML5 and Node. O’Reilly.
Boualem Benatallah, Fabio Casati, and others. 2004. Web service conversation modeling: A cornerstone for e-business automa-

tion. Internet Computing, IEEE 8, 1 (2004), 46–54.
P. Bryan and M. Nottingham. 2013. JavaScript Object Notation (JSON) Patch. Request for Comments: 6902. (2013). https:

//tools.ietf.org/html/rfc6902.
Ward Cunningham and others. 1987. Using pattern languages for object-oriented programs. In Proceedings of OOPSLA, Vol. 87.
Robert Daigneau. 2011. Service Design Patterns:Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services.

Addison-Wesley.
Roy Fielding and Julian Reschke. 2014. Hypertext transfer protocol–HTTP/1.1. Request for Comments: 7231. (2014). https:

//tools.ietf.org/html/rfc7231.
Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Dissertation.

University of California, Irvine.
Joe Gregorio and Bill de hÓra. 2007. The Atom Publishing Protocol. Request for Comments: 5023. (2007). https://tools.ietf.org/

html/rfc5023.

EuroPLoP’16, Vol. , No. , Article , Publication date: .

:22 • C. Pautasso, A. Ivanchikj and S. Schreier

Florian Haupt, Frank Leymann, and Cesare Pautasso. 2015. A conversation based approach for modeling REST APIs. In Proc.
of the 12th WICSA 2015. Montreal, Canada.

P. Hoffman and J. Snell. 2014. JSON Merge Patch. Request for Comments: 7386. (2014). https://tools.ietf.org/html/rfc7386.
Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions.

Addison-Wesley.
Ana Ivanchikj. 2016. RESTful Conversation with RESTalk-the Use Case of Doodle-. In Proc. of the ICWE’16. Springer, To

Appear.
Ana Ivanchikj, Cesare Pautasso, and Silvia Schreier. 2016. Visual Modeling of RESTful Conversations with RESTalk:an Ex-

ploratory Survey. Journal of Software and Systems Modeling (2016), Accepted.
Diane Jordan and John Evdemon. 2011. Business Process Model And Notation (BPMN) Version 2.0. OMG. (2011). http:

//www.omg.org/spec/BPMN/2.0/.
Olga Liskin, Leif Singer, and Kurt Schneider. 2011. Teaching Old Services New Tricks: Adding HATEOAS Support as an

Afterthought. In Proceedings of the Second International Workshop on RESTful Design. ACM, 3–10.
Gerard Meszaros and others. 1998. A Pattern Language for Pattern Writing. Pattern languages of program design 3 (1998),

529–574.
Mark Nottingham. 2005. POST Once Exactly (POE). Internet Draft draft-nottingham-http-poe-00. (March 2005). https:

//tools.ietf.org/html/draft-nottingham-http-poe.
Mark Nottingham. 2013. Home Documents for HTTP APIs. Internet Draft draft-nottingham-json-home-03. (May 2013). https:

//tools.ietf.org/html/draft-nottingham-json-home-03.
Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2015. Modeling RESTful Conversations with Extended BPMN Choreogra-

phy Diagrams. In Proc. of the 9th European Conference on Software Architecture. Vol. 9278. Springer, 87–94.
Cesare Pautasso and Erik Wilde. 2010. RESTful Web Services: Principles, Patterns, Emerging Technologies. In Proceedings of

the 19th International Conference on World Wide Web. ACM, 1359–1360.
Leonard Richardson and Sam Ruby. 2007. RESTful Web Services. O’Reilly.
Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. 1996. Software Patterns. Commun. ACM 39, 10 (Oct. 1996),

37–39. DOI:http://dx.doi.org/10.1145/236156.236164
Christoph Szymanski and Silvia Schreier. 2012. Case Study: Extracting a Resource Model from an Object-oriented Legacy

Application. In Proceedings of the Third International Workshop on RESTful Design (WS-REST ’12). ACM, Lyon, France,
19–24. DOI:http://dx.doi.org/10.1145/2307819.2307825

Stefan Tilkov, Martin Eigenbrodt, Silvia Schreier, and Oliver Wolf. 2015. REST und HTTP: Entwicklung und Integration nach
dem Architekturstil des Web (in German) (3rd ed.). dpunkt.verlag.

Mathias Weske. 2012. Business Process Management: Concepts, Languages, and Architectures (2nd ed.). Springer.

EuroPLoP’16, Vol. , No. , Article , Publication date: .

