
Web User Interface Implementation Technologies: An Underview

Antero Taivalsaari1, Tommi Mikkonen2, Kari Systä3 and Cesare Pautasso4

1Nokia Technologies, Tampere, Finland
2Department of Computer Science, University of Helsinki, Helsinki, Finland

3Tampere University of Technology, Tampere, Finland
4Software Institute, Faculty of Informatics, USI, Lugano, Switzerland

antero.taivalsaari@nokia.com, tommi.mikkonen@helsinki.fi, kari.systa@tut.fi, cesare.pautasso@usi.ch

Keywords: Web User Interfaces, Web Programming, Web Rendering, Single Page Web Applications, Web Application
Architectures.

Abstract: Over the years, the World Wide Web has evolved from a document distribution environment into a rich de-
velopment platform that can run compelling, full-fledged software applications. However, the programming
capabilities of the web browser – designed originally for relatively simple scripting tasks – have evolved or-
ganically in a rather haphazard fashion. Consequently, there are many ways to build applications on the Web
today. Depending on one’s viewpoint, current standards-compatible web browsers support three, four or even
five built-in application rendering and programming models. In this paper, we provide an ”underview” of the
built-in client-side web application UI implementation technologies, i.e., a summary of those rendering mod-
els that are built into the standards-compatible web browser out-of-the-box. While the dominance of the base
HTML/CSS/JS technologies cannot be ignored, we foresee Web Components and WebGL gaining popularity
as the world moves towards more complex and even richer web applications, including systems supporting
virtual and augmented reality.

1 INTRODUCTION

The World Wide Web has become such an integral
part of the human society that it is often forgotten that
the Web did not even exist thirty years ago. The orig-
inal design sketches related to the World Wide Web
date back to the late 1980s. The first web browser
prototype for the NeXT computer was completed by
Tim Berners-Lee in December 1990. The first version
of the Mosaic web browser was released in Febru-
ary 1993, followed by the first commercially suc-
cessful browser – Netscape Navigator – in late 1994.
Widespread commercial use of the Web took off in the
late 1990s (Berners-Lee and Fischetti, 2000) when the
web browser became the most commonly used com-
puter program, sparking a revolution that has trans-
formed not only commerce but communication, social
life and politics as well.

In desktop computers, today nearly all the impor-
tant tasks are performed using the web browser. Even
mobile applications can be viewed merely as ”mirrors
into the cloud” (Charland and Leroux, 2011). While
native mobile apps still offer UI frameworks and wid-
gets that are better suited to the limited screen size and

input modalities of the devices, valuable content has
moved gradually from mobile devices to the cloud,
thus reducing the original role of the mobile apps con-
siderably.

Interestingly, the programming capabilities of the
Web have largely been an afterthought – designed
originally for relatively simple scripting tasks. Due
to different needs and motivations, there are many
ways to make software run on the Web – many more
than people generally realize. Furthermore, over the
years these programming capabilities have evolved in
a rather haphazard fashion. Consequently, there are
various ways to build applications on the Web. With-
out considering any extensions, frameworks and add-
on libraries, depending on one’s viewpoint, the Web
browser natively supports three, four or five different
built-in application rendering and development mod-
els. Thousands of libraries and frameworks have then
been implemented on top of these built-in models.

Furthermore, in addition to architectures that par-
tition applications more coarsely between server and
client side components (Gallidabino and Pautasso,
2017), it is increasingly possible to fine-tune the ap-
plication logic by moving code flexibly between the

client and the server (Meijer, 2007). In this context,
the rendering capabilities of the web browser are cru-
cial in creating the presentation layer of the applica-
tions.

In this paper, we provide a comparison of the
built-in client-side web application architectures, i.e.,
the programming capabilities that the web browsers
provide out-of-the-box before any additional libraries
are loaded. This is a topic that has received surpris-
ingly little attention in the literature. While there are
countless papers on specific web development tech-
nologies, and hundreds of libraries have been devel-
oped on top of the browser, there are few if any
papers comparing the built-in user interface devel-
opment models offered by the browser itself. The
choice between these alternative development mod-
els has a significant impact on the overall architecture
and structure of the resulting web applications. The
choices are made more difficult by the fact that the
web browser offers a number of overlapping features
to accomplish even basic tasks, reflecting the histori-
cal, organic evolution of the web browser as an appli-
cation platform.

This paper is motivated by the recent trend to-
ward simpler, more basic approaches in web devel-
opment. According to recent studies, the vast major-
ity (up to 86%) of web developers feel that the Web
and JavaScript ecosystems have become far too com-
plex (http://stateofjs.com/). There is a movement to
go back to the roots of web application development
by building directly upon what the web browser can
provide without the added layers introduced by vari-
ous libraries and frameworks. The recent ”zero frame-
work manifesto” crystallizes this desire for simplicity
(Bitworking.org, 2014). However, even the ”vanilla”
browser offers a cornucopia of choices when it comes
to application development.

This paper is an extended version of an earlier
conference paper (Taivalsaari et al., 2017). The ex-
tensions over the earlier work include extended back-
ground and motivation, more detailed description of
the different technologies, together with sample code,
and a more elaborated discussion on the broader ar-
chitectural implications.

The structure of this paper is as follows. In Sec-
tion 2, we provide an overview on the evolution of
the web browser as an application platform. In Sec-
tion 3, we dive into the built-in user interface de-
velopment and rendering models offered by modern
web browsers: (1) DOM, (2) Canvas, (3) WebGL, (4)
SVG, and (5) Web Components. In Section 4, we
provide a comparison, followed by a broader archi-
tectural discussion in Section 5. Finally, Section 6
concludes the paper.

2 EVOLUTION OF THE WEB
BROWSER AS AN
APPLICATION PLATFORM

Over the past twenty-five years, the World Wide Web
has evolved from its humble origins as a document
sharing system to a massively popular hypermedia ap-
plication and content distribution environment – in
short, the most powerful information dissemination
environment in the history of humankind. This evo-
lution has not taken place in a fortnight; it has not
followed a carefully designed master plan either. Al-
though the World Wide Web Consortium (W3C) has
seemingly been in charge of the evolution of the Web,
in practice the evolution has been driven largely by
dominant web browser vendors: Mozilla, Microsoft,
Apple, Google and (to a lesser degree) Opera. Over
the years, these companies have had divergent, often
misaligned business interests. While browser compat-
ibility has improved significantly in recent years, the
browser landscape is still truly a mosaic or cornucopia
of features, reflecting organic evolution – or a tug of
war – between different vendors over time.

Before delving into more technical topics, let us
briefly revisit the evolution of the web browser as a
software platform (Taivalsaari et al., 2008; Taivalsaari
and Mikkonen, 2011; Anttonen et al., 2011).

Classic Web. In the early life of the Web, web
pages were truly pages, i.e., page-structured docu-
ments that contained primarily text with interspersed
images, without animation or any interactive con-
tent. Navigation between pages was based on sim-
ple hyperlinks, and a new web page was loaded from
the web server each time the user clicked on a link.
There was no need for asynchronous network com-
munication between the browser and the web server.
For reading user input some pages were presented as
forms, with simple textual fields and the possibility to
use basic widgets such as buttons and radio buttons.
These types of ”classic web” pages were characteris-
tic of the early life of the Web in the early 1990s.

Hybrid Web. With the introduction of DHTML
– the combination of HTML, Cascading Style Sheets
(CSS), the JavaScript language (Flanagan, 2011), and
the Document Object Model (DOM) – it became pos-
sible to create interactive web pages with built-in sup-
port for more advanced graphics and animation. The
JavaScript language, introduced in Netscape Naviga-
tor version 2.0B almost as an afterthought in Decem-
ber 1995, made it possible to build animated interac-
tive content by scripting directly the web browser.

In the second phase, web pages became increas-
ingly interactive. Web pages started containing ani-
mated graphics and plug-in components that allowed

richer, more interactive content to be displayed. This
phase coincided with the commercial takeoff of the
Web during the dot-com boom of the late 1990s when
companies realized that they could create commer-
cially valuable web sites by displaying advertisements
or by selling merchandise and services over the Web.
Plug-in components such as Adobe Flash, RealPlayer,
Quicktime and Shockwave were introduced to make
it possible to construct web pages with visually en-
ticing, interactive multimedia, allowing advanced an-
imations, movie clips and audio tracks to be inserted
in web pages.

In this phase, the Web started moving in direc-
tions that were unforeseen by its original designer,
with web sites behaving more like multimedia presen-
tations rather than static pages. Content mashups and
web site cross-linking became popular and communi-
cation protocols between the browser and the server
became increasingly advanced (Daniel and Matera,
2014). Navigation was no longer based solely on hy-
perlinks. For instance, Flash apps supported drag-
and-drop and direct clicking/events on various types
of objects, whereas originally no support for such fea-
tures existed in browsers.

The Web as an Application Platform. In the
early 2000s, the concept of Software as a Service
(SaaS) emerged. Salesforce.com pioneered the use
of the Web as a Customer Relationship Manage-
ment (CRM) application platform in the early 2000s,
demonstrating and validating the use of the Web and
the web browser as a viable target platform for busi-
ness applications. At that point, people realized that
the ability to offer software applications seamlessly
over the Web and then perform instant worldwide
software updates could offer unsurpassed business
benefits.

As a result of these observed benefits, people
started to build web sites that behave much like desk-
top applications, for example, by allowing web pages
to be updated partially, rather than requiring the entire
page to be refreshed. Such systems often eschewed
link-based navigation and utilized direct manipulation
techniques (e.g., drag and drop features) borrowed
from desktop-style applications instead. Interest in
the use of the browser as an application platform was
reinforced by the introduction of Ajax (Asynchronous
JavaScript and XML) (Holdener, 2008). The key idea
in Ajax was to use asynchronous network communi-
cation between the client and the server to decouple
user interface updates from network requests. This
made it possible to build web sites that do not neces-
sarily block when interacting with the server and thus
behave much like desktop applications, for example,
by allowing web pages to be updated asynchronously

one user interface element at a time, rather than re-
quiring the entire page to be updated each and every
time something changed. Although Ajax was primar-
ily a specific technique rather than a complete devel-
opment model or platform, it fueled further interest
in building ”Web 2.0” applications that could run in
a standard web browser. This also increased the de-
mand for a full-fledged programming language that
could be used directly from inside the web browser in-
stead of relying on any external plug-in components.

After the introduction of Ajax and the concept of
Single Page Applications (SPAs) (Jadhav et al., 2015),
the number of web development frameworks on top
of the web browser has exploded. Today, there are
over 1,300 officially listed JavaScript libraries (see
http://www.javascripting.com/).

Server-Side JavaScript. The use of client-side
web development technologies has spread also to
other domains. For instance, after the introduction of
Google V8 high-performance JavaScript engine, the
use of the JavaScript language has quickly spread into
server-side development as well. As a result, Node.js
(https://nodejs.org/) has become a vast ecosystem of
its own. In fact, the NPM (Node Package Manager)
ecosystem has been growing even faster in recent
years than the client-side JavaScript ecosystem. Ac-
cording to npmjs.com, there are more than 700,000
NPM packages at the time of this writing.

As already mentioned earlier, in this paper we
shall focus only on client-side technologies and only
on those technologies that have been included na-
tively in standards-compatible web browsers. We feel
that this is an area that is surprisingly poorly covered
by existing research.

Non-Standard Development Models and Ar-
chitectures. For the sake of completeness, it should
be mentioned that over the years web browsers have
supported various additional client-side rendering and
development models. For instance, Java applets were
an early attempt to include Java language and Java
virtual machine (JVM) support directly in a web
browser. However, because of the immaturity of
the technology (e.g., inadequate performance of early
JVMs) and resistance by some vendors, applets never
became an officially supported browser feature.

In the late 2000s, so called Rich Internet Applica-
tion (RIA) platforms such as Adobe AIR or Microsoft
Silverlight were very much in vogue. RIA systems
were an attempt to reintroduce alternative program-
ming languages and libraries in the context of the Web
in the form of browser plug-in components that each
provided a complete platform runtime. For a compre-
hensive overview of RIA systems, refer to Castelyn’s
survey (Casteleyn et al., 2014). However, just as it

was predicted in (Taivalsaari and Mikkonen, 2011),
the RIA phenomenon turned out to be rather short-
lived. The same seems to be true also of various at-
tempts to support native code execution directly from
within the web browser. For instance, Google’s Na-
tive Client offers a sandbox for running compiled C
and C++ code in the browser, but it has not become
very popular. Mozilla’s classic NPAPI (Netscape Plu-
gin Application Programming Interface) – introduced
originally in 1995 by Netscape – has recently been
removed from all the major browsers; for instance,
Google Chrome stopped supporting it in 2015. Al-
though there are some interesting ongoing efforts in
this area – such as the W3C WebAssembly effort
(http://webassembly.org/), it is now increasingly dif-
ficult to extend the programming capabilities of the
web browser without modifying the source code of
the browser itself.

3 CLIENT-SIDE WEB USER
INTERFACE RENDERING
TECHNOLOGIES

As summarized above, the history of the Web has un-
dergone a number of evolutionary phases, reflecting
the document-oriented – as opposed to application-
oriented – origins of the Web. Nearly all the appli-
cation development capabilities of the Web have been
an afterthought, and have emerged as a result of di-
vergent technical needs and business interests instead
of careful planning and coordination.

As a result of the browser evolution that has oc-
curred in the past two decades, today’s web browsers
support a mishmash of complementary, partially over-
lapping rendering and development models. These
include the dominant ”holy trinity” of HTML, CSS
and JavaScript, and its underlying Document Object
Model (DOM) rendering architecture. They also in-
clude the Canvas 2D Context API as well as WebGL.
Additionally, there are important technologies such
as Scalable Vector Graphics (SVG) and Web Compo-
nents that complement the basic DOM architecture.

The choice between the rendering architectures
can have significant implications on the structure of
client-side web applications. Effectively, all of the
technologies mentioned above introduce their own
distinct programming models and approaches that the
developers (and development frameworks built on top
of these base technologies) are expected to use. Fur-
thermore, all of them have varying levels of frame-
work, library and tool support available to simplify
the actual application development work on top of the

underlying development model. The DOM-based ap-
proach is by far the most popular and most deeply
ingrained, but the other technologies deserve a fair
glimpse as well.

Below we will dive more deeply into each technol-
ogy. We will start with the DOM, Canvas and WebGL
models, because these three technologies can be re-
garded more distinctly as three separate technologies.
We will then examine SVG and Web Components,
which introduce their own programming models but
which are closely coupled with the underlying DOM
architecture at the implementation level.

3.1 DOM / DHTML

In web parlance, the Document Object Model (DOM)
is a platform-neutral API that allows programs and
scripts to dynamically access and update the content,
structure and style of web documents. Document Ob-
ject Model is the foundation for Dynamic HTML –
the combination of HTML, CSS, and JavaScript –
that allows web documents to be created and manip-
ulated using a combination of declarative and imper-
ative development styles. Logically, the DOM can be
viewed as an attribute tree that represents the con-
tents of the web page that is currently displayed by
the web browser. Programmatic interfaces are pro-
vided for manipulating the contents of the DOM tree
from HTML, CSS and JavaScript.

In the web browser, the DOM serves as the foun-
dation for a retained (automatically managed) graph-
ics architecture. In such a system, the application de-
veloper has no direct, immediate control over render-
ing. Rather, all the drawing is performed indirectly
by manipulating the DOM tree by adding, removing
and modifying its nodes; the browser will then decide
how to optimally lay out and render the display after
each change.

Over the years, the capabilities of the DOM have
evolved significantly. The evolution of the DOM
has been described in a number of sources, includ-
ing Flanagan’s JavaScript ”bible” (Flanagan, 2011).
In this paper we will not go into details, but it is use-
ful to provide a summary since this evolution partially
explains why the browser offers such a cornucopia of
overlapping functionality.

• DOM Level 1 specification – published in 1998
– defines the core HTML (and XML) document
models. It specifies the basic functionality for
document navigation.

• DOM Level 2 specification – published in 2000
– defines the stylesheet object model, and pro-
vides methods for manipulating the style infor-
mation attached to a document. It also enables

traversals on the document and provides support
for XML namespaces. Furthermore, it defines
the event model for web documents, including the
event listener and event flow, capturing, bubbling,
and cancellation functionality.

• DOM Level 3 specification – released as a num-
ber of separate documents in 2001-2004 – defines
document loading and saving capabilities, as well
as provides document validation support. In ad-
dition, it also addresses document views and for-
matting, and specifies the keyboard events and
event groups, and how to handle them.

• DOM Level 4 specification refers to a ”living doc-
ument” that is kept up to date with the latest de-
cisions of the WHATWG/DOM working group
(https://dom.spec.whatwg.org/).

DOM attributes can be manipulated from HTML,
CSS, JavaScript, and to some extent also XML code.
As a result, a number of entirely different develop-
ment styles are possible, ranging from purely impera-
tive usage to a combination of declarative styles using
HTML and CSS. For instance, it is possible to create
impressive 2D/3D animations using the CSS anima-
tion capabilities without writing a single line of im-
perative JavaScript code.

Below is a ”classic” DHTML example that de-
fines a text paragraph and an input button in HTML.
The input button definition includes an onclick event
handler function that – when clicked – hides the text
paragraph by changing its visibility style attribute to
’hidden’.

<!DOCTYPE html>
<html><body>
<p id =” t e x t ”>Thi s i s a p i e c e o f t e x t .</ p>

<input type =” b u t t o n ” va lue =” Hide t e x t ”
o n c l i c k =” document . ge tE lemen tById (’ t e x t ’) . s t y l e . v i s i b i l i t y

= ’ h idden ’ ”>

</ body></ html>

In practice, very few developers nowadays use
the raw, low-level DOM interfaces directly. The
DOM and DHTML serve as the foundation for an
extremely rich library and tool ecosystem that has
emerged on top of the base technologies. The manip-
ulation of DOM attributes is usually performed using
higher-level convenience functions provided by pop-
ular JavaScript / CSS libraries and frameworks.

3.2 Canvas

The Canvas (officially known as the Canvas
2D Context API) is an HTML5 feature that
enables dynamic, scriptable rendering of two-
dimensional (2D) shapes and bitmap images

(https://www.w3.org/TR/2dcontext/). It is a low-
level, imperative API that does not provide any
built-in scene graph or advanced event handling
capabilities. It that regard, Canvas offers much
lower level graphics support than the DOM or SVG
APIs that will automatically manage and (re)render
complex graphics elements.

Canvas objects are drawn in immediate mode.
This means that once a shape such as a rectangle is
drawn using Canvas API calls, the data structure rep-
resenting the rectangle is immediately forgotten by
the system. If the position of the rectangle needs to
be changed, the entire scene needs to be repainted, in-
cluding any objects that might have been invalidated
(covered) by the rectangle. In the equivalent DOM or
SVG case, one could simply change the position at-
tributes of the rectangle, and the browser would then
automatically determine how to optimally re-render
all the affected objects.

The code snippet below provides a minimal ex-
ample of Canvas API usage. In this example, we
first instantiate a 2D canvas graphics context of size
100x100 after declaring the corresponding HTML el-
ement. We then imperatively draw a full circle with a
40 pixel radius in the middle of the canvas using the
Canvas 2D Context JavaScript API.

<!DOCTYPE html>
<html><body>

<ca n va s id =” myCanvas ” width=” 100 ” h e i g h t =” 100 ”>
<s c r i p t>
v a r c = document . ge tE lemen tById (” myCanvas ”) ;
v a r c t x = c . g e t C o n t e x t (” 2d ”) ;
c t x . b e g i n P a t h () ;
c t x . a r c (5 0 , 5 0 , 4 0 , 0 , 2⇤ Math . PI) ;
c t x . s t r o k e () ;
</ s c r i p t>

</ body></ html>

Note that in these simple examples we are mix-
ing HTML and JavaScript code. In real-world ex-
amples, it would be a good practice to keep declara-
tive HTML (and CSS) code and imperative JavaScript
code in separate files. We will discuss programming
style implications later in Section 4.

The event handling capabilities of the Can-
vas API are minimal. A limited form of event
handling is supported by the Canvas API with
hit regions (https://developer.mozilla.org/en-
US/docs/Web/API/Canvas API/Tutorial/Hit regions
and accessibility).

Conceptually, Canvas is a low level API upon
which a higher-level rendering engine might be built.
Although canvas elements are created in the browser
as subelements in the DOM, it is entirely possible to
create just one large canvas element, and then per-
form all the application rendering and event handling
inside that element. There are JavaScript libraries

that add event handling and scene graph capabilities
to the canvas element. For instance, with Paper.js
(http://paperjs.org/) or Fabric.js (http://fabricjs.com/)
libraries, it is possible to paint a canvas in layers, and
then recreate specific layers, instead of having to re-
paint the entire scene manually each time. Thus, the
Canvas API can be used as a full-fledged application
rendering model of its own.

The Canvas element was was initially introduced
by Apple in 2004 for use inside their own Mac OS
X WebKit component in order to support applications
such as Dashboard widgets in the Safari browser. In
2005, the Canvas element was adopted in version 1.8
of Gecko browsers and Opera in 2006. The Canvas
API was later standardized by the Web Hypertext Ap-
plication Technology Working Group (WHATWG).

The adoption of the Canvas API was hindered by
Apple’s intellectual property claims over this API.
From a technical viewpoint, adoption was also slowed
down by the fact that the Canvas API expressiveness
is significantly more limited than the well-established,
mature immediate-mode graphics APIs that were
available in mainstream operating systems already a
decade or two earlier. Microsoft’s DirectX API –
originally introduced in Windows 95 – is a good ex-
ample of a substantially more comprehensive API.

3.3 WebGL
WebGL (http://www.khronos.org/webgl/) is a cross-
platform web standard for hardware accelerated 3D
graphics API developed by Khronos Group, Mozilla,
and a consortium of other companies including Ap-
ple, Google and Opera. The main feature that WebGL
brings to the Web is the ability to display 3D graph-
ics natively in the web browser without any plug-in
components. WebGL is based on OpenGL ES 2.0
(http://www.khronos.org/opengles), and it leverages
the OpenGL shading language GLSL. A comprehen-
sive JavaScript API is provided to open up OpenGL
programming capabilities to JavaScript programmers.

In a nutshell, WebGL provides a JavaScript API
for rendering interactive, immediate-mode 3D (and
2D) graphics within any compatible web browser
without the use of plug-in components. WebGL is in-
tegrated into major web browsers, enabling Graphics
Processing Unit (GPU) accelerated usage of physics
and image processing and effects in web applications.
WebGL applications consist of control code written in
JavaScript and shader code that is typically executed
on a GPU.

WebGL is widely supported in modern desktop
browsers. However, its availability, performance and
usability is dependent on various factors such as the
GPU supporting it.

Just like the Canvas API discussed above, the
WebGL API is a rather low-level API that does not
automatically manage rendering or support high-level
events. From the application developer’s viewpoint,
the WebGL API may in fact be too cumbersome to
use directly without utility libraries. For instance, set-
ting up typical view transformation shaders (e.g., for
view frustum), loading scene graphs and 3D objects
in the popular industry formats can be very tedious
and requires writing a lot of source code.

Given the verbosity of shader definitions, we
do not provide any code samples here. However,
there are excellent WebGL examples on the Web.
For instance, the following link contains a great
example of an animated, rotating, textured cube
with lighting effects: http://www.sw-engineering-
candies.com/snippets/webgl/hello-world/.

Because of the complexity and the low level na-
ture of the raw WebGL APIs, many JavaScript conve-
nience libraries have been built or ported onto WebGL
in order to facilitate development. Examples of such
libraries include A-Frame, BabylonJS, three.js, O3D,
OSG.JS, CopperLicht and GLGE.

3.4 SVG

Scalable Vector Graphics (SVG) is an XML-based
vector image format for two-dimensional graphics
with support for interactivity, affine transformations
and animation. The SVG Specification (W3C, 2011)
is an open standard published by the World Wide
Web Consortium (W3C) originally in 2001. Although
bitmap images were supported since the early days of
the Web (the tag was introduced in the Mosaic
browser in 1992), vector graphics support came much
later via SVG.

The code snippet below provides a simple exam-
ple of an SVG object definition that renders an auto-
matically scaling, graphical W3C logo to the screen
(https://dev.w3.org/SVG/tools/svgweb/samples/svg-
files/w3c.svg).
<div id =” w3clogo ”>
<svg xmlns = ’ h t t p : / / www. w3 . org / 2 0 0 0 / svg ’ viewBox=” 0 0 131

76 ”>
<p a t h d=”M36, 5 l12 , 4 1 l12 �41h33v4l �13 ,21 c30 ,10 ,2 ,69 �21 ,28

l7�2c15 ,27 ,33 , �22 ,3 , �19 v�4l12 �20h�15l �17 ,59h�1l
�13�42l �12 ,42h�1l �20�67h9l12 , 4 1 l8 �28l �4�13h9 ”
f i l l = ’#005A9C ’ />

<p a t h d=”M94, 5 3 c15 , 3 2 , 3 0 , 1 4 , 3 5 , 7 l �1�7c�16 ,26�32 ,3�34 ,0
M122 , 1 6 c�10�21�34,0�21,30c�5�30 16 ,�38 23 ,�21 l5
�10l �2�9” />

</ svg>
</ div>

While SVG was originally just a vector image for-
mat, SVG support has been integrated closely with the
web browser to provide comprehensive means for cre-
ating interactive, resolution-independent content for
the Web. Just like with the HTML DOM, SVG images

can be manipulated using DOM APIs via HTML,
CSS and JavaScript code. This makes it possible to
create shapes such as lines, Bezier/elliptical curves,
polygons, paths and text and images that be resized,
rescaled and rotated programmatically using a set of
built-in affine transformation and matrix functions.

The code sample below serves as an example of
interactive SVG that defines a circle object that is ca-
pable of changing its size in response to mouse input.

<!DOCTYPE svg PUBLIC ” � / /W3C / / DTD SVG 1 . 1 / / EN”
” h t t p : / /www. w3 . org / G r a p h i c s /SVG / 1 . 1 / DTD/ svg11 . d t d ”>

<svg wid th =” 6cm” h e i g h t =” 5cm” viewBox=” 0 0 600 500 ” xmlns
=” h t t p : / /www. w3 . org / 2 0 0 0 / svg ” v e r s i o n =” 1 . 1 ”>

<!�� Change t h e r a d i u s w i t h each c l i c k ��>
<s c r i p t t y p e =” a p p l i c a t i o n / e c m a s c r i p t ”>

f u n c t i o n c i r c l e c l i c k (e v t) {
v a r c i r c l e = e v t . t a r g e t ;
v a r c u r r e n t R a d i u s = c i r c l e . g e t A t t r i b u t e (” r ”) ;
i f (c u r r e n t R a d i u s == 100) {

c i r c l e . s e t A t t r i b u t e (” r ” , c u r r e n t R a d i u s ⇤2) ;
} e l s e {

c i r c l e . s e t A t t r i b u t e (” r ” , c u r r e n t R a d i u s ⇤ 0 . 5) ;
}

}
</ s c r i p t>

<!�� D e f i n e c i r c l e w i t h o n c l i c k e v e n t h a n d l e r ��>
<c i r c l e o n c l i c k =” c i r c l e c l i c k (e v t) ” cx=” 300 ” cy=” 225 ” r

=” 100 ” f i l l =” b l u e ” />
</ svg>

As illustrated in the example, the SVG scene
graph enables event handlers to be associated with ob-
jects, so a circle object may respond to an onClick

event or other events. To get the same functionality
with canvas, one would have to implement the code
to manually match the coordinates of the mouse click
with the coordinates of the drawn circle in order to
determine whether it was clicked.

Just like with the HTML DOM, SVG support in
the web browser is based on a retained (managed)
graphics architecture. Inside the browser, each SVG
shape is represented as an object in a scene graph that
is rendered to the display automatically by the web
browser. When the attributes of an SVG object are
changed, the browser will calculate the most optimal
way to re-render the scene, including the other objects
that may have been impacted by the change.

In the earlier days of the Web, SVG was the only
means to implement a scalable, ”morphic” graphics
system, which is why the SVG DOM API was used
as the foundation for graphics implementation, e.g.,
in the original Lively Kernel web programming
system (Taivalsaari et al., 2008). The following
link provides a reference to a more comprehensive,
”Lively-like” example of an SVG-based application
that includes interactive capabilities (image rescal-
ing and rotation based on mouse events) as well:
https://dev.w3.org/SVG/tools/svgweb/samples/svg-
files/photos.svg/.

In general, it is important to summarize that in the

context of the Web, considering its tight integration
within the DOM and its ability to embed HTML snip-
pets as a foreign Object, SVG is much more than just
an image format. Together with event handling capa-
bilities, affine transformations, gradient support, clip-
ping, masking and composition features, SVG can be
used as the basis for a full-fledged, standalone graph-
ical application architecture or windowing system.

3.5 Web Components

Web Components (https://www.w3.org/TR/#tr Web
Components) are a set of features added to the HTML
and DOM specifications to enable the creation of
reusable widgets or components in web documents
and applications. The intention behind Web Compo-
nents is to bring component-based software engineer-
ing principles to the World Wide Web, including the
interoperability of higher-level HTML elements, en-
capsulation, information hiding and the general abil-
ity to create reusable, higher-level UI components that
can be added flexibly to web applications.

An important motivation for Web Components is
the fundamentally brittle nature of the Document Ob-
ject Model. The brittleness comes from the global
nature of elements in the DOM created by HTML,
CSS and JavaScript code. For example, when you use
a new HTML id or class in your web application
or page, there is no easy way to find out if it will
conflict with an existing name already used by the
page earlier. Subtle bugs creep up, style selectors can
suddenly go out of control, and performance can suf-
fer, especially when attempting to combine code writ-
ten by multiple authors (Mikkonen and Taivalsaari,
2008). Over the years various tools and libraries have
been invented to circumvent the issues, but the funda-
mental brittleness issues remain. The other important
motivation is the fixed nature of the standard set of
HTML elements. Web Components make it possible
to extend the basic set of components and support dy-
namically downloadable components across different
web pages or applications.

Web Components are built on top of a concept
known as the Shadow DOM. In technical terms,
the Shadow DOM introduces the concept of parallel
”shadow” subtrees in the Document Object Model.
These subtrees can be viewed conceptually as ”ice-
bergs” that expose only their tip while the imple-
mentation details remain invisible (and inaccessible)
under the surface. Unlike regular branches in the
DOM tree, shadow trees provide support for scoped
styles and DOM encapsulation, thus obeying the well-
known separation of concerns and modularity princi-
ples that encourage strong decoupling between public

interfaces and implementation details (Parnas, 1972).
Utilizing the Shadow DOM, the programmer can bun-
dle CSS with HTML markup, hide implementation
details, and create self-contained reusable compo-
nents in vanilla JavaScript without exposing the im-
plementation details or having to follow awkward
naming conventions to ensure unique naming.

At the technical level, a shadow DOM tree is just
a normal DOM tree with two differences: 1) how it is
created and used, and 2) how it behaves in relation to
the rest of the web page. Normally, the programmer
creates DOM nodes and appends those nodes as chil-
dren of another element. With shadow DOM, the pro-
grammer creates a scoped DOM tree that is attached
to the element but that is separate from its actual chil-
dren. The element it is attached to is its shadow host.
Anything that the programmer adds to the shadow
tree becomes local to the hosting element, including
the <style> attributes. This is how shadow DOM
achieves CSS style scoping.

The following listing presents a minimal web
component example that creates a text editor that au-
tomatically resizes itself as text is entered in the text
area. Note that this example only describes the use of
the component – not its definition.
<!DOCTYPE html>
<html><head>
<l i n k r e l =” i m p o r t ” h r e f =” b a s i c�a u t o s i z e � t e x t a r e a . h tml ” >
</ head><body>
<p>A u t o m a t i c a l l y r e s i z i n g t e x t i n p u t componen t :</ p>
<b a s i c�a u t o s i z e � t e x t a r e a>E d i t me !
</ b a s i c�a u t o s i z e � t e x t a r e a>
</ body></ h tml>

Up until recently, many browsers did not
support Web Components. Rather, they had
to be emulated in the form of polyfill li-
braries that implement the missing function-
ality (http://webcomponents.org/polyfills/).
For latest implementation status, refer to
http://caniuse.com/#feat=shadowdom/.

4 COMPARISON

Table 1 provides a comparison of the technologies in-
troduced in the previous section. The table covers
topics such as the overall development paradigm (im-
perative vs. declarative), rendering architecture (re-
tained/managed vs. immediate), information hiding
support, primary intended usage domain and current
popularity.

In the original version of this paper (Taivalsaari
et al., 2017), we discussed the topics presented in Ta-
ble 1, as well as examined the characteristics and typ-
ical use cases of the presented technologies in more
depth. Refer to the earlier paper for more details.

Table 1: Comparison of Built-In Client-Side Rendering
Technologies.

DOM /
DHTML

Canvas WebGL SVG Web Compo-
nents

Year of In-
troduction

1998 2004 2011 2001 2011

Development
Paradigm

Declarative
and imper-
ative

Imperative Imperative Declarative
and im-
perative

Declarative
and im-
perative

Rendering
Architecture

Retained Immediate
(explicit
repainting
required)

Immediate
(explicit
repainting
required)

Retained Retained

Information
Hiding

No No No No (except
when creating
multiple SVG
images)

Yes (Shadow
DOM encap-
sulation and
scoped styles)

Primary Us-
age Domain

Documents
and forms

2D graph-
ics (e.g., in
games)

3D/2D graph-
ics especially
in games and
VR/AR

2D image ren-
dering

Web appli-
cations and
graphical user
interfaces

Popularity Ubiquitous Popular in
specific use
cases

Limited Popular in
specific use
cases

Growing

Technology
Maturity

Mature Mature Mature Mature Emerging
(standard-
ization
underway)

Abstraction
Level

Medium Very low Low Medium High

Ease of
Code Reuse

Low to
medium

Low Medium
(shaders)

Low to high
(high as an
image format)

High

Declarative
Animation
Support

Yes No No Yes Yes

Mobile
Browser
Support

Yes Yes Not in An-
droid (add-
ons required)

Yes Not in iOS
(polyfill add-
ons required)

5 BROADER ARCHITECTURAL
DISCUSSION

According to MacLennan’s classic software design
principles (Schummer et al., 2009), some of the most
fundamental principles in engineering aesthetics are
simplicity and consistency: There should be a mini-
mum number of concepts with simple rules for their
combination; things that are similar should also look
similar, and different things should look different
(MacLennan, 1999). Unfortunately, the web browser
violates these and several other key principles in a
number of ways, as evidenced by the above observa-
tions.

Overlapping Capabilities. Ideally, in a software
development environment there should be only one,
clearly the best and most obvious, way to accomplish
each task. However, in web development – even in
a generic web browser without add-on components
or libraries – there are several overlapping ways to
accomplish even the most basic rendering tasks. It
is not easy to provide recommendations on specific
technologies to use, except for those tasks in which
immediate-mode graphics are required (in which case
either the Canvas or WebGL API will have to be uti-
lized). In most cases, developers will end up using the
basic DOM/DHTML approach, complemented with
various libraries.

Mismatching Development Styles. When
composing web applications even using the basic

DOM/DHTML approach, the developers commonly
face a mixture of declarative and imperative program-
ming styles. Recent trends (e.g., CSS in JS) attempt
to reduce everything to JavaScript at the expense of
the conciseness of the declarative approaches. They
may also have to use a combination of retained and
immediate-mode graphics especially when aiming at
applications that are usable across different screen
sizes – following responsive web design (Marcotte,
2011).

Incompatible and Incoherent Abstractions.
The abstractions and programming patterns supported
by Canvas and WebGL APIs are very different from
DOM/DHTML and SVG programming. Web Com-
ponents introduce yet another abstraction layer that
has been patched on top of the DOM/DHTML. In
general, the features supported by the browser reflect
organic evolution of features over the years rather
than any carefully master-planned architectural de-
sign.

Nevertheless, given the organic evolution of the
web ecosystem, it is fairly safe to predict that we
will not go back to a less diverse web ecosystem or
have a chance to radically simplify the feature set of
the web browser. For example, the latest versions of
the JavaScript language – ECMAScript 6, 7 and 8 –
have introduced a lot of new language functionality
(promises, generators and decorators, to list a few),
thus ensuring that library rewriting and evolution will
be swift in the coming years. This will further fuel
some of the most problematic characteristics of web
development, addressed in the following.

Fashion-driven Development. Over the past
years there has been a notable trend in the library area
towards fashion-driven development. By this we re-
fer to the developers’ tendency to surf on the wave
of newest and most dominant ”alpha” frameworks.
For instance, the once hugely popular Prototype.js
and JQuery.js libraries are nowadays mostly forgot-
ten, replaced by Knockout.js and Backbone.js in 2012.
Back in 2014, Angular.js was by far the most domi-
nant alpha framework, while in 2018 it is the React.js
+ Redux.js ecosystem that seems to be capturing the
majority of developer attention. As witnessed by the
somewhat unfortunate recent evolution of the Angu-
lar ecosystem, the alpha frameworks have a tendency
to evolve very quickly once they get developers’ at-
tention, leading into compatibility issues. To make
matters worse, once the next fashionable alpha frame-
work emerges and hordes of developers start jump-
ing ship onto the new one, it becomes questionable
to what extent one can build long-lasting business-
critical applications and services, e.g., for the medi-
cal industry in which products must commonly have

a minimum lifetime of twenty years. With the present
pace of upgrades, the browser and the web server as
the runtime environment would be almost completely
replaced by patches, upgrades, and updates; similarly,
most of the libraries would be replaced several times
by newer, fancier ones.

Opportunistic Design and ”Cargo Cult” Pro-
gramming. In web development there has histori-
cally been a strong tradition of mashup-based devel-
opment: searching, selecting, pickling, mashing up
and glueing together disparate libraries and pieces of
software (Hartmann et al., 2008). Often such devel-
opment has the characteristics of cargo cult program-
ming: ritually including code and program structures
that serve no real purpose or that the programmer has
chosen to include because hundreds of other develop-
ers have done so – without really understanding why.
While this approach can save a lot of work and open
up interesting opportunities for large-scale code reuse
(Salminen and Mikkonen, 2012), this approach does
not foster development of reliable, long-lasting ap-
plications, because even the smallest changes in the
constituent components – each of which evolves sep-
arately and independently – can break applications
(Salminen et al., 2010).

Violation of Established Software Engineering
Principles. Although many web developers may
not realize this, the web browser violates many es-
tablished software engineering principles, including
the lack of information hiding, lack of manifest in-
terfaces, lack of orthogonality, and lack of (afore-
mentioned) simplicity and consistency (MacLennan,
1999) (Mikkonen and Taivalsaari, 2008). The absence
of these principles is easy to understand given that the
web browser was originally designed to be a docu-
ment distribution environment rather than an appli-
cation execution environment. However, the current
popularity of the Web as a software platform makes it
unfortunate that these important principles have been
ignored. Currently Web Components are the best –
and arguably also the only – chance to reintroduce
some of these important principles to the heart of the
Web.

In the broader picture, the deficiencies of the web
browser as a software platform are being tackled with
an abundance of libraries. As of this writing, there are
more than 1,300 officially listed JavaScript libraries
in javascripting.com, with new ones being introduced
at a rapid pace. Although many of the libraries are
domain-specific, a lot of them are aimed squarely
at solving the architectural limitations of the web
browser, e.g., to provide a consistent set of manifest
interfaces to perform all the programming tasks. Over
the years, JavaScript libraries have evolved from mere

convenience function libraries to full-fledged Model-
View-Controller (MVC) frameworks providing exten-
sive UI component sets, application state manage-
ment, network communication and database inter-
faces, and so on. In general, these will not help in
tackling the above characteristics but rather add a new
layer of complexity on top of them.

6 CONCLUSIONS

Web development today presents a cornucopia of
choices on many fronts. Both on the client side and
the server side, there exist a large number of compet-
ing, overlapping technologies, and new libraries and
tools become available almost on a daily basis. The
rapid pace of innovation has put the developers in a
complex position in which there are numerous ways
to build applications on the Web – many more than
most people realize, and also arguably more than are
really needed.

In this paper, we have investigated one of the
perhaps most overlooked areas in web development:
the client-side web rendering architectures that have
been built into the web browser. We summarized five
built-in rendering and application development mod-
els (DOM/DHTML, Canvas, WebGL, SVG, and Web
Components), followed by some broader architectural
discussion.

REFERENCES

Anttonen, M., Salminen, A., Mikkonen, T., and Taivalsaari,
A. (2011). Transforming the Web into a Real Appli-
cation Platform: New Technologies, Emerging Trends
and Missing Pieces. In Proceedings of the 2011 ACM
Symposium on Applied Computing, pages 800–807.
ACM.

Berners-Lee, T. and Fischetti, M. (2000). Weaving the
Web: The Original Design and Ultimate Destiny of
the World Wide Web by its Inventor. HarperInforma-
tion.

Bitworking.org (2014). Zero Framework Manifesto: No
More JS Frameworks. https://bitworking.org/news/
2014/05/zero framework manifesto.

Casteleyn, S., Garrigós, I., and Mazón, J.-N. (2014). Ten
Years of Rich Internet Applications: A Systematic
Mapping Study, and Beyond. ACM Trans. Web,
8(3):18:1–18:46.

Charland, A. and Leroux, B. (2011). Mobile Application
Development: Web vs. Native. Communications of
the ACM, 54(5):49–53.

Daniel, F. and Matera, M. (2014). Mashups: Concepts,
Models and Architectures. Springer.

Flanagan, D. (2011). JavaScript: The Definitive Guide, 6th
Edition. O’Reilly Media.

Gallidabino, A. and Pautasso, C. (2017). Maturity Model
for Liquid Web Architectures. In 17th International
Conference on Web Engineering (ICWE 2017), vol-
ume 10360, pages 206–224, Rome, Italy. Springer.

Hartmann, B., Doorley, S., and Klemmer, S. R. (2008).
Hacking, Mashing, Gluing: Understanding Oppor-
tunistic Design. IEEE Pervasive Computing, 7(3):46–
54.

Holdener, A. T. (2008). Ajax: The Definitive Guide: Inter-
active Applications for the Web. O’Reilly Media.

Jadhav, M. A., Sawant, B. R., and Deshmukh, A. (2015).
Single Page Application using AngularJS. Interna-
tional Journal of Computer Science and Information
Technologies, 6(3).

MacLennan, B. J. (1999). Principles of Programming Lan-
guages: Design, Evaluation, and Implementation, 3rd
edition. Oxford University Press.

Marcotte, E. (2011). Responsive Web Design. Editions Ey-
rolles.

Meijer, E. (2007). Democratizing the Cloud. In Companion
Proc. of OOPSLA’07, pages 858–859.

Mikkonen, T. and Taivalsaari, A. (2008). Web Applications
– Spaghetti Code for the 21st Century. In Proc. Int’l
Conf. Software Engineering Research, Management
and Applications (SERA’2008, Prague, Czech Repub-
lic, August 20-22, 2008), pages 319–328. IEEE Com-
puter Society.

Parnas, D. L. (1972). On the Criteria to be Used in Decom-
posing Systems into Modules. Communications of the
ACM, 15(12):1053–1058.

Salminen, A. and Mikkonen, T. (2012). Mashups: Software
Ecosystems for the Web Era. In IWSECO@ ICSOB,
pages 18–32.

Salminen, A., Mikkonen, T., Nyrhinen, F., and Taivalsaari,
A. (2010). Developing Client-Side Mashups: Experi-
ences, Guidelines and the Road Ahead. In Proc. 14th
Int’l Academic MindTrek Conference: Envisioning
Future Media Environments, pages 161–168. ACM.

Schummer, J., MacLennan, B., and Taylor, N. (2009). Aes-
thetic Values in Technology and Engineering Design.
In Philosophy of Technology and Engineering Sci-
ences, Handbook of the Philosophy of Science, pages
1031 – 1068. North-Holland, Amsterdam.

Taivalsaari, A. and Mikkonen, T. (2011). The Web as an Ap-
plication Platform: The Saga Continues. In 37th EU-
ROMICRO Conference on Software Engineering and
Advanced Applications, pages 170–174. IEEE.

Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz, K.
(January 2008). Web Browser as an Application Plat-
form: the Lively Kernel Experience, Sun Labs Tech-
nical Report TR-2008-175.

Taivalsaari, A., Mikkonen, T., Systä, K., and Pautasso, C.
(2017). Comparing the Built-In Application Archi-
tecture Models in the Web Browser. In International
Conference on Software Architecture (ICSA). IEEE.

W3C (2011). Scalable Vector Graphics (SVG) Specification
1.1 (Second Edition). https://www.w3.org/TR/SVG/.

