
Interface Quality Patterns — Communicating and Improving
the Quality of Microservices APIs

Mirko Stocker
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

Olaf Zimmermann
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

Uwe Zdun
University of Vienna, Faculty of
Computer Science, Software
Architecture Research Group,

Vienna, Austria

Daniel Lübke
iQuest GmbH, Hanover, Germany

Cesare Pautasso
Software Institute, Faculty of
Informatics, USI Lugano,

Switzerland

ABSTRACT

The design and evolution of Application Programming In-
terfaces (APIs) in microservices architectures is challenging.
General design issues in integration and programming have
been covered in great detail in many pattern languages since
the beginnings of the patterns movement, and service-oriented
infrastructure design patterns have also been published in
the last decade. However, the interface representations (i.e.,
the content of message payloads) have received less atten-
tion. We presented five structural representation patterns in
our previous work; in this paper we continue our coverage
of the API design space and propose five interface quality
patterns that deal with the observable aspects of quality-
attribute-driven interface design for efficiency, security, and
manageability: An API Key allows API providers to identify
clients. Providers may offer rich data contracts in their re-
sponses, which not all consumers might need. A Wish List
allows the client to request only the attributes in a response
data set that it is interested in. If a client makes many API
calls, the provider can employ a Rate Limit and bill clients
according to a specified Rate Plan. A provider has to provide
a high-quality service while at the same time having to use its
available resources economically. The resulting compromise
is expressed in a provider’s Service Level Agreement.

CCS CONCEPTS

• Software and its engineering → Patterns; Designing
software;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282319

ACM Reference Format:
Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke,

and Cesare Pautasso. 2018. Interface Quality Patterns — Commu-
nicating and Improving the Quality of Microservices APIs. In 23rd
European Conference on Pattern Languages of Programs (Euro-

PLoP ’18), July 4–8, 2018, Irsee, Germany. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3282308.3282319

1 INTRODUCTION

A recent trend in the software landscape is the ubiquity of
message-based remote Application Programming Interfaces
(APIs): software-as-a-service providers, for example Sales-
force, increasingly provide not just end-user facing websites
but also offer the same services as APIs to third parties, mak-
ing it possible to integrate services into other applications or
to combine APIs to enable new use cases1. This trend has
been called the API economy [23].

APIs have also become more important in intra-company
use cases: starting with Service-Oriented Architecture (SOA)
[24] and culminating in the microservices trend [26], software
systems have become more and more distributed. On the
client side, single page applications (i.e., client programs writ-
ten in JavaScript communicating with one or more backend
APIs over the Internet) have also greatly contributed to the
proliferation of APIs. This trend will likely continue into the
near future with masses of internet-enabled things arriving
in our homes.

Quality aspects of APIs play an important role in the
API economy and in intra-company use cases; they have
to be communicated (from providers to clients) and to be
achieved/improved. We have identified several patterns that
provide answers on how to achieve a certain level of quality of
the offered services in terms of API design and usage at the
interface level. When applying these patterns, API providers
often need to identify the clients making API calls, for ex-
ample by assigning each client a unique API Key. Providers
serve a potentially large and diverse group of clients and may
offer rather rich response data sets; not all clients might need
all of this information all the time. A Wish List allows clients

1An example of such a service is https://ifttt.com, who allows non-
programmers to connect APIs of different providers.

https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3282308.3282319
https://ifttt.com

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

to request only the attributes in a response data set that they
are interested in. Providers need to economise their resources
– by slowing down heavy users or by billing them more. A
Rate Limit can be used to block clients that have exceeded a
predefined limit of API usage. Providers can define a Rate
Plan for the API usage to bill clients or other stakeholders.
On the other hand clients need to know that a provider can
deliver an acceptable service quality. Providers can use a
Service Level Agreement to specify measurable aspects of
performance, scalability, and availabiliy and define penalties
and compensation credits.

We have collected these patterns by studying 31 Web
APIs and API-related specifications. We also reflected on our
own professional experience and interactions with practicing
architects and developers.

API providers need to balance different, conflicting con-
cerns to guarantee high service quality while ensuring cost-
effectiveness. Hence, all five patterns presented in this paper
address or contribute to the following overarching design
issue:

How to achieve a certain level of qual-
ity in an offered API, while at the same
time using the available resources in a cost-
effective way?

The paper is structured in the following way. Section 2
discusses relations to patterns in other languages. Section
3 outlines the terminology and basic abstractions that are
used throughout the paper. Section 4 then introduces five
interface quality patterns. Section 5 summarizes and gives a
brief outlook on future work.

2 RELATIONS TO OTHER PATTERNS
AND PATTERN LANGUAGES

The patterns presented here are a continuation of our work
on Interface Representation Patterns [27] that introduced
five basic patterns for structuring messages in remote APIs:
Atomic Parameter, Atomic Parameter List, Parameter Tree,
Parameter Forest, and Pagination.

These structural interface representation patterns deal
with the following design issue:

What is an adequate number of API mes-
sage parameters and how should these pa-
rameters be structured?

For instance, in an HTTP context, this design issue can
be interpreted as how the parameters transported with the
message are structured and how many parameters are trans-
ported. In an HTTP resource API usually the request body
is used for data sent to or received from the server (e.g., in
JSON, XML, or another MIME type), and query parameters
of the URL can also be used to further specify the requested
data. In a WSDL/SOAP context, we can interpret this design
issue as how should the SOAP message parts be organized
and which data types are used to define the corresponding el-
ements in XML Schema (XSD). Similar considerations apply
to other technologies such as gRPC or Avro.

A summary of the problem-solution pairs of our interface
representation patterns that are referenced by the patterns
presented in this paper can be found in Table 1.

The relationships between the patterns presented in this
paper and the previously published ones are shown in Fig-
ure 1.

Both Release It! [16] and R. Hanmer’s pattern language
Patterns for Fault Tolerant Software [11] introduce many
patterns for improving the stability, resilience and reliability
of software systems. These high-level concerns are important
quality characteristics for most (if not all) API provider
implementations. In contrast to our patterns, these patterns
focus on the internal architecture and implementation of the
software system, while our patterns describe characteristics
of the API description.

3 BASIC ABSTRACTIONS AND
CONCEPTS

This paper uses a number of basic abstractions and concepts
which form the domain model of our pattern language. At the
most abstract level, there are two kinds of communication
participants (or participants for short) that communicate
via an API : the API provider and the API client. An API
provider exposes any number of APIs; an API client uses any
number of APIs. One participant can also play both roles (for
instance, in an API Gateway [19] in which the communication
participant offers services as the provider of the gateway and
is client to the services shielded by the gateway).

In the client role, a communication participant uses API
endpoints to access the API. An API endpoint is a provider-
side end of a communication channel and a specification of
where the API resources are located so that APIs can be
accessed by API clients. Each endpoint thus needs to have a
unique address such as a Uniform Resource Locator (URL),
as commonly used on the World-Wide Web, as well as in
HTTP-based SOAP or RESTful HTTP. Each API endpoint
belongs to an API ; one API can have different endpoints.

The API exposes operations. In addition to the endpoint
address, an operation identifier is needed to identify the
operation. For instance, in SOAP this is the top-level XML
tag in the body of the message (if WSDL is used to describe
the service, named after a WSDL operation element); in
RESTful HTTP this is the name of the HTTP method (or
verb) such as GET.

The operations of an API can be invoked by a conversation.
A conversation is any kind of exchange of messages (i.e., the
conversation uses messages). For instance, a conversation can
be a call conversation which usually uses a request message
and a response message (unless the call is a one-way call
which omits the response message).

Finally, all operations are part of the technical API contract
(which usually details all possible conversations and mes-
sages down to the technical parameter representations and
addresses). Thus, the contract describes the API endpoint.
API contracts are necessary for realizing any interoperable
and testable technical communication; that is, in order to be

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Table 1: Problem-solution pairs of previously published Interface Representation Patterns.

Pattern Problem Solution

Atomic Parameter How can an API provider define a
single, primitive data element as
parameter in a request message or a
response message?

To exchange a simple, unstructured data
element (such as a number, a string, or a
boolean value), define only a single scalar
parameter for a message.

Atomic Parameter
List

How can the API provider define
multiple primitive data elements as
parameters in a request message or a
response message?

To transmit two or more simple,
unstructured data elements, define the
message’s parameters as multiple Atomic
Parameters (such as numbers, strings, or
boolean values) arranged in an ordered list.

Parameter Tree How can the API provider define tree
data structures in the parameters of a
message? How can the API provider
define repetitive or nested data
elements in the parameters of a
message?

Define the parameter representation of a
message based on a single root data element
that contains one or more subordinate
composite data structures such as tuples,
arrays, or trees.

Parameter Forest How can the API provider define
repetitive or nested data between
elements in the parameters of a
message that cannot or should not be
represented well in a single tree
structure?

Define the parameter representation of a
message as multiple simple and composite
data structure representations, including
scalars, lists, and complex types like trees,
arranged in an ordered list of those
structures.

able to communicate, API clients must comply with the API
providers contract for those parts of the API that are used.
This can be done explicitly at design time (with the help
of static contracts) and/or at runtime (to achieve a more
dynamic contract nature).

These classes and relationships of the domain model form
the basic vocabulary for all sections of the following pattern
texts.

4 PATTERNS FOR COMMUNICATING
AND IMPROVING INTERFACE
QUALITY

The quality of an API has many dimensions, starting with the
accuracy of the functionality described in the API contract,
but also including many other qualities such as reliability,
performance, security, and scalability [2]. These operational
technical qualities are often referred to as Quality-of-Service
(QoS) properties. QoS qualities might be conflicting among
each other, and almost always need to be balanced with
development concerns such as changeability [17] and economic
forces such as costs.

The following patterns presented in this paper can be used
to communicate the quality attributes of an API and also to
improve them:

API Key : An API provider needs to identify the communica-
tion participant it receives a message from to decide if
that message actually originates from a registered, valid
customer or some unknown client. A unique, provider-
allocated API Key per client to be included in each
request allows the provider to identify and authenticate
its clients. This pattern is concerned with the quality
attribute security.

Wish List : Performance requirements and bandwidth limi-
tations might dictate a parsimonious conversation be-
tween the provider and the client. Providers may offer
rather rich data sets in their response messages, but
not all clients might need all of this information all the
time. A Wish List allows the client to request only the
attributes in a response data set that it is interested
in. This pattern addresses qualities such as accuracy
of the information needed by the consumer, response
time, and performance, i.e., processing power required
to answer a request.

Rate Limit : Having identified its clients, an authenticated
client could use excessively many resources, thus nega-
tively impacting the service for other clients. To limit
such abuse, a Rate Limit can be employed to restrain
certain clients. The client can stick to its Rate Limit

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

Figure 1: Relationships between the patterns presented in this paper and selected Interface Representation Patterns [27].

Interface Representation Patterns

Interface Quality Patterns

Atomic Parameter Atomic Parameter List Parameter TreeParameter Forest

API Key

Rate Limit

Service Level Agreement

Rate Plan

Wish List

may influence

represented with

details described inidentify client with

depends on client's may use

refers toidentify client with

may influence

express wishes with applied toapplied to

by avoiding unnecessary calls to the API. This pattern
is concerned with the quality attributes of reliability,
performance, and economic viability.

Rate Plan: If the service is paid for or follows a freemium
model, the provider needs to come up with one or
more pricing schemes. The most common variations
are a simple flat-rate subscription or a more elaborate
consumption-based pricing scheme [10], explored in
the Rate Plan pattern. This pattern addresses the
commercialization aspect of an API.

Service Level Agreement : API providers want to deliver high-
quality services while at the same time using their avail-
able resources economically. The resulting compromise
is expressed in a provider’s Service Level Agreement
(SLA) by the targeted service level objectives and asso-
ciated penalties (including reporting procedures). This
pattern is concerned with the communication of any
quality attribute between API providers and clients.
Availability is an example of a quality that is often
expressed in such an SLA.

The primary target audience for the first four patterns are
API architects and developers. The last two patterns concern
business aspects of APIs and are thus more relevant for API
product owners.

4.1 Pattern: API Key

a.k.a. Access Token, Provider-Allocated Client Identifier

Context. An API provider offers services to subscribed par-
ticipants only. One or more clients have signed up and want
to use the services. These clients have to be identified.

Problem. How can an API provider identify and authenticate
different clients (that make requests)?

Forces. When identifying and authenticating clients on the
API provider side, the following forces come into play:

• How can client programs identify themselves at an API
endpoint without having to store and transmit user
account credentials?

• How can a client calling an API be decoupled from the
client’s organization?

• How can varying levels of API authentication, depend-
ing on security criticality, be implemented?

When resolving these forces, conflicts between security
requirements and other qualities make trade offs necessary:

• How can security, in particular identification and au-
thentication of clients at an endpoint, be established
while still making the API easy to use for clients?

• How can endpoints be secured while minimizing per-
formance impacts?

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Non-solution. A rich portfolio of application-level security
solutions adressing Confidentiality, Integrity, and Availability
(CIA) requirements is available. However, for a free and pub-
lic API the management overhead and performance impact
might not be economically feasible. For a Solution Internal
API or a Community API, security could be implemented
at the network level with a Virtual Private Network (VPN)
or two-way SSL. However, this complicates application-level
usage scenarios such as enforcing Rate Limits.

Solution. As an API provider, assign each client a unique
token – the API Key – that the client can present to the API
endpoint for identification purposes.

How it works. Encode the API Key as an Atomic Pa-
rameter, i.e., a single string parameter. This interoperable
representation makes it easy to send the key in the request
header, as part of a URL query string , or in the request
body (a.k.a. payload). Because of its small size, including it
in every request causes only minimal overhead.

As the API provider, make sure that the API Keys you
generate are unique and hard to guess. This can be achieved
by using a serial number (to guarantee uniqueness) padded
by random data and signed and/or encrypted with a private
key (to prevent guessing). Alternatively, base the key on a
Universally Unique Identifier UUID2. UUIDs are easier to use
in a distributed setting because there is no serial number that
needs to be synchronized across systems. However, UUIDs are
not necessarily random-generated3; hence, they also require
further obfuscation just like in the serial number scheme.

Example. In the following call to the Cloud Convert API4 a
new process to convert a DOCX file to PDF format is started.
The client creates a new conversion process by informing the
provider of the desired in- and output format, passed as two
Atomic Parameters in the body of the request (the input
file has to be provided by a second call to the API). For
billing purposes, the client identifies itself by passing the API
Key gqmbwwB74tToo4YOPEsev5 in the Authorization header
of the request, according to the HTTP/1.1 Authentication
RFC 72355 specification. HTTP supports various types of
authentication, here the RFC 67506 Bearer type is used:

POST https://api.cloudconvert.com/process

Authorization: Bearer gqmbwwB74tToo4YOPEsev5

Content-Type: application/json

{

"inputformat": "docx",

"outputformat": "pdf"

}

2https://tools.ietf.org/html/rfc4122.html
3Version 1 UUIDs are a combination of timestamp and hardware ad-
dresses: https://en.wikipedia.org/wiki/Universally unique identifier#
Versions. The Security Considerations section in RFC 4122 warns not
to “assume that UUIDs are hard to guess; they should not be used as
security capabilities (identifiers whose mere possession grants access),
for example.”
4https://cloudconvert.com
5https://tools.ietf.org/html/rfc7235.html
6https://tools.ietf.org/html/rfc6750

The API provider can thus identify the client and charge
their account.

Implementation hints. When securing an API with an API
Key, the following advice should be taken into consideration:

• To further protect against brute force attackers trying
to guess an API Key, an IP range-specific Rate Limit
can be used to block an attacker’s requests.

• Use a well-tested library and refrain from writing your
own cryptography code. For example, Java has a Java
Cryptography Extension that provides various widely
used key generation algorithms.

• Follow the OWASP REST Security Cheat Sheet7 when
securing your HTTP resource API. The cheat sheet
contains a section on API Keys and contains other
valuable information on security as well.

• API Keys should not be presented as HTML/HTTP
cookies because cookies may be used to identify a
user session and might be stored for a long period of
time. API Keys should also be usable by non-browser
clients such as Software Development Kits (SDKs) or
command line tools that interact with the API [7].

• Client developers should not accidentally store their
shared secrets (e.g., keys) in version control systems8

or other places where others can get easy access to
them (e.g., code repositories).

Consequences. An API Key is a lightweight alternative to a
full-fledged authentication protocol and balances basic secu-
rity requirements with the desire to minimize management
and communication overhead.

Resolution of forces.

+ Having the API Key as a shared secret between the
API endpoint and the client, the endpoint can identify
the client making the call and use this information to
further authenticate and authorize the client.

+ Using a separate API Key instead of the customer’s
account credentials decouples different customer roles,
such as administration, business management, and API
usage, from each other. This makes it possible to let the
customer create and manage multiple API Keys, for
example to be used in different client implementations
or locations, with varying permissions associated to
them. In the case of a security break or leak, they can
also be revoked independently of the client account. A
provider might also give clients the option to use mul-
tiple API Keys with different permissions or provide
analytics (e.g., number of API calls performed) and
Rate Limits per API Key.

+ Because the API Key is small, it can be included in
each request without impacting performance much.

− The API Key is a shared secret, and because it is
transported with each request, it should only be used
over a secure connection such as HTTPS. If this is not

7https://www.owasp.org/index.php/REST Security Cheat Sheet
8This has actually happened: https://www.theregister.co.uk/2015/01/
06/dev blunder shows github crawling with keyslurping bots/.

https://tools.ietf.org/html/rfc4122.html
https://cloudconvert.com
https://tools.ietf.org/html/rfc7235.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc4122.html
https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions
https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions
https://cloudconvert.com
https://tools.ietf.org/html/rfc7235.html
https://tools.ietf.org/html/rfc6750
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/
https://www.theregister.co.uk/2015/01/06/dev_blunder_shows_github_crawling_with_keyslurping_bots/

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

possible, additional security measures (VPN, public-key
cryptography) must be used. Configuring and using
secure protocols and other security measures has a
certain configuration management and performance
overhead.

− An API Key is just a simple identifier and thus cannot
be used to transport additional payload, such as an
expiration time or authorizations.

Further discussion. An API Key can also be combined with
an additional secret key to ensure the integrity of requests.
The secret key is shared between the client and the server but
never transmitted in API requests. The client uses this key
to create a signature hash of the request and sends the hash
along with the API Key. The provider can identify the client
with the provided API Key, calculate the same signature
hash using the shared secret key and compare the two. This
ensures that the request was not tampered with. Amazon
uses such asymmetric cryptography to secure access to its
Elastic Compute Cloud9.

Alternatives. Even if combined with a secret key, API
Keys might be insufficient or impractical as the sole means
of authentication and authorization. Consider the case where
three parties are involved in an interaction: the user, the
service provider and a third party that wants to interact
with the service provider on behalf of the user. For example,
consider a user who wants to allow a mobile app to store its
data on the user’s Dropbox account. In this case API Keys
cannot be used if the user does not want to share them with
the third party. For such use cases, consider using OAuth
2.0 instead. Another security technology that could possibly
be leveraged is the Security Assertion Markup Language
(SAML)10, which can, for instance, be used in Horizontal
Integration to secure the communication between backend
APIs. These alternatives offer better security but also come
with a much higher implementation and runtime complexity.

Another popular alternative is the JSON Web Tokens
(JWT) standard RFC 751911 (see this JWT Introduction12).
JWT defines a simple message format for access tokens with a
payload. The access tokens are created and cryptographically
signed by the API provider. Providers can verify the authen-
ticity of such a token and use it to identify clients. Because
JWT tokens, in contrast to API Keys, have a payload, the
provider can securely store additional information there.

Known Uses. Many public Web APIs use the API Key con-
cept, sometimes under different names (such as access token).
A few examples are:

∙ The YouTube Data API13 supports both OAuth 2.0
as well as API Keys. Clients have to generate different
API Keys, depending on where these keys are used,
e.g., server keys, browser keys, iOS and Android keys.

9http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-key-pairs.html
10https://wiki.oasis-open.org/security/FrontPage
11https://tools.ietf.org/html/rfc7519
12https://jwt.io/introduction
13https://developers.google.com/youtube/registering an application

These keys can then only be used by the configured apps
(in case of the iOS and Android apps), IP addresses
or domain names. This additional layer of protection
makes a specific key unusable outside of the specified
app. This is done to avoid that an attacker could,
for example, simply extract the key from an installed
Android application and use it to make requests on
behalf of that application.

∙ The GitHub API’s primary means of authentication
and authorization is OAuth, but basic authentica-
tion14 with a username and token – the API Key –
is also supported. Here, the API Key is not sent via
HTTP header but through the password parameter
of the basic authentication. For example, a request
to access the user resource using the cURL command
line tool looks as follows: curl -u username:token

https://api.github.com/user.
∙ The API of online payment provider Stripe15 uses
a publishable key and a secret key. The secret key
takes the role of an API Key and is transmitted in
the Authorization header of each request, whereas
the publishable key is just the account identifier. This
naming scheme might be surprising for clients expecting
the secret key to be kept private, like Amazon’s secret
key, which is never transmitted and only used to sign
requests.

Related Patterns. Many web servers use Session Identifiers [9]
to maintain and track user sessions across multiple requests;
this is a similar concept. In contrast to API Keys, Session
Identifiers are only used for single sessions and then discarded.

The Security Patterns in [20] provide solutions satisfying
security requirements such as Confidentiality, Integrity, and
Authentication/Authorization, and discusses their strengths
and weaknesses in detail. Access control mechanisms, such
as Role-based Access Control (RBAC) or Attribute-based
Access Control (ABAC), can complement API Keys and other
approaches to authentication; these access control practices
require one of the described authentication mechanisms to
be in place.

Other Sources. Chapter 12 of the RESTful Web Services
Cookbook [1] is dedicated to security and presents six related
recipes. [18] covers two related patterns of alternative authen-
tication mechanism in a RESTful context, Basic Resource
Authentication and Form-Based Resource Authentication.

[21] provides a comprehensive discussion on securing APIs
with OAuth 2.0, OpenID Connect, JWS, and JWE. Chapter
9 of [22] has a discussion of conceptual and technology alter-
natives and instructions on how to implement an OAuth 2.0
server. The OpenID Connect16 specification deals with user
identification on top of the OAuth 2.0 protocol.

14https://developer.github.com/v3/auth/#basic-authentication
15https://stripe.com/docs/api
16http://openid.net/connect/

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://wiki.oasis-open.org/security/FrontPage
https://wiki.oasis-open.org/security/FrontPage
https://tools.ietf.org/html/rfc7519
https://jwt.io/introduction
https://developers.google.com/youtube/registering_an_application
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://wiki.oasis-open.org/security/FrontPage
https://tools.ietf.org/html/rfc7519
https://jwt.io/introduction
https://developers.google.com/youtube/registering_an_application
https://developer.github.com/v3/auth/#basic-authentication
https://developer.github.com/v3/auth/#basic-authentication
https://stripe.com/docs/api
http://openid.net/connect/
https://developer.github.com/v3/auth/#basic-authentication
https://stripe.com/docs/api
http://openid.net/connect/

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

4.2 Pattern: Wish List

a.k.a. Data Wish Enumeration, Partial Response Represen-
tation Request, Data Selection Profile

Context. API providers need to serve multiple different clients
that invoke the same operations. Not all clients have the same
information needs: some might just need a subset of the data
offered by the endpoint, other clients might need rich data
sets.

Problem. How can an API client inform the API provider at
runtime about the data it is interested in?

Forces. Multiple clients with different information needs
might use an API. Hence, the primary design issues that
drive selection and adoption of this pattern are:

∙ How can a provider satisfy the possibly conflicting
information needs of individual clients without having
to implement per-client endpoints but still avoiding
under- and over-fetching?

∙ How can a client specify and learn about provider-side
selection filters that reduce message verbosity by allow-
ing clients to select the level of detail of the retrieved
information?

∙ How can a provider cope with the increased complexity
of its endpoint design with regards to security, testing
and maintenance that results from having to create
responses tailored to individual client’s needs?

Furthermore, API providers also need to balance general
quality forces such as response time, throughput and process-
ing time.

Non-solution. These forces could be resolved by intro-
ducing infrastructure components such as network- and
application-level gateways and caches to reduce the load
on the server, but such components add to the complexity
of the deployment model and network topology of the
API ecosystem and increase related infrastructure testing,
operations management, and maintenance efforts.

Solution. As an API client, provide a Wish List in the request
that enumerates all desired data elements of the requested
resource. As an API provider, deliver only those data elements
in the response message that are enumerated in the Wish
List.

How it works. Specify the Wish List as an Atomic Pa-
rameter List, which in some cases can have a special form of
being scalar (i.e, a simple Atomic Parameter) that indicates
a verbosity level such as minimal, medium, and full.

A common variant is providing options for expansion in
responses. That is, the response to the first request only
provides a terse result with a list of parameters that can be
expanded in subsequent requests. The client can select one
or more of these parameters in a Wish List to expand the
request results.

As another variant, define and support a wild card mecha-
nism as known from SQL and other query languages, e.g., a
star * to request all data elements of a particular resource
(which could then be the default, if no wishes are speci-
fied). Even more complex schemes are possible like cascaded
specifications (like customer.* fetching all data about the
customer).

As yet another variant, regular expression syntax or query
languages such as XPath (for XML payloads) can be used.
Likewise, GraphQL17 or RestSQL18 offer declarative query
languages to describe the representation to be retrieved
against an agreed upon schema found in the API documen-
tation.

Example. In the Lakeside Mutual Customer-Care applica-
tion19, a request for a customer returns all of its available
attributes.

curl http://localhost:8080/customers/gktlipwhjr

For customer ID gktlipwhjr, this would return:

{

"customerId" : "gktlipwhjr",

"firstname" : "Max",

"lastname" : "Mustermann",

"birthday" : "1989-12-31T23:00:00.000+0000",

"streetAddress" : "Oberseestrasse 10",

"postalCode" : "8640",

"city" : "Rapperswil",

"email" : "admin@example.com",

"phoneNumber" : "055 222 4111",

"moveHistory" : [],

"customerInteractionLog" : {

"contactHistory" : [],

"classification" : {

"priority" : "gold"

}

}

}

Alternatively, the client can also provide a Wish List of
fields in the query string to restrict the result to just those
fields. For example, a client might only be interested in the
customerId, birthday and postalCode fields:

curl http://localhost:8080/customers/gktlipwhjr?\

fields=customerId,birthday,postalCode

The returned response now contains only the requested
fields:

{

"customerId" : "gktlipwhjr",

"birthday" : "1989-12-31T23:00:00.000+0000",

"postalCode" : "8640"

}

17https://graphql.org
18http://restsql.org
19Lakeside Mutual is a fictitious insurance company invented by
the authors comprising of several microservices to demonstrate
the patterns in action. It can be found at https://github.com/
Microservice-API-Patterns.

https://graphql.org
http://restsql.org
https://graphql.org
http://restsql.org
https://github.com/Microservice-API-Patterns
https://github.com/Microservice-API-Patterns

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

This response is much smaller; only the information re-
quired by the client was transmitted.

Implementation hints. When introducing a Wish List in
your API, consider the following advice:

∙ Do not blindly apply Wish List to all API operations.
Typical result data structures on which Wish Lists are
applied are Parameter Trees and Parameter Forests.
That is, it usually makes most sense to wish for a subset
of the possible data elements as a client, if a complex
data set needs to be queried, and the result again is a
complex data structure.

∙ The complexity of endpoint design and programming
effort increases to achieve a higher degree of flexibil-
ity and optimize qualities like performance. To check
whether introducing the Wish List leads to better per-
formance, during API development and maintenance
you should keep track of the size of messages, number
of messages, and measure end-to-end processing times.
Also, given the variety of possible client requests, in-
troducing logging helps to detect and fix problematic
requests.

∙ When implementing a Wish List that may extend to
sub-resources in RESTful HTTP, include Metadata
Elements that lists the paths to available sub-resources.
Have a look at the practices recommended by Atlassian
for the Confluence REST API20 to further understand
this expansion concept.

∙ When combined with a Conditional Request, the imple-
mentation of the Conditional Request needs to consider
the requested data attributes in its treatment of the
request.

∙ One option to implement a variant of this pattern in
RESTful HTTP is to define multiple representations,
one for each type of wish (e.g., verbosity level), and let
the client articulate its preferred representation during
content negotiation.

Consequences. Wish List helps to manage the different in-
formation needs of API clients. Consider applying this pat-
tern if the network has limited capacity and you have a
certain amount of confidence that clients only need a subset
of the available data; but be aware of the potential negative
consequences such as additional security threats, additional
complexity, as well as test and maintenance efforts.

Resolution of forces.

+ By adding or not adding attribute values in the Wish
List instance, the API client expresses its wishes to
the provider; hence, the desire for “Datensparsamkeit”
(i.e., data parsimony) is met.

+ The provider does not need to provide specialized and
optimized versions for operations or to guess required
data for clients’ use cases.

20https://developer.atlassian.com/confdev/
confluence-server-rest-api/expansions-in-the-rest-api

+ Clients can specify data they require thereby enhancing
performance by creating less database and network
load.

− Providers have to implement more logic in their service
layers ([9]) , possibly affecting other layers down to
data access as well.

− Providers risk to expose their data model to clients
thereby increasing coupling.

− Clients have to create the Wish List, the network has
to transport this metadata and the provider has to
process it.

Further discussion. A comma-separated list of attribute
names can lead to problems when mapped to programming
language elements. For instance, misspelling an attribute
name might lead to an error (if the API client is lucky) or
the expressed wish might simply be ignored (which might
lead the API client to the impression that the attribute does
not exist). Furthermore, API changes might have unexpected
consequences; for instances, a renamed attribute might no
longer be found.

Solutions using the more complex schemes introduced
above (like cascaded specifications, wild cards, or expan-
sion) might be harder to understand and build than simpler
alternatives. Sometimes existing provider-internal search-and-
filter capabilities like wild cards or regular expressions can
be reused.

Before introducing a Wish List mechanism, possible neg-
ative consequences regarding security, reliability, additional
test and maintenance effort, and so on need to be carefully
considered. Those aspects are often treated as an afterthought
and can get complex to fix once the API is in production.

Known Uses. Wish Lists can be found in many public Web
APIs under different names and in many variations:

∙ The Google Calendar API21 has the notion of partial
requests, partial responses and patches. These can be
seen as a variant of the Wish List pattern: the client
sends a field parameter that lists desired values. The
API also supports an expression syntax including wild
cards.

∙ The Facebook Graph API22 supports a variation of
this pattern under “making nested requests”: Field
expansion in the Graph API allows client developers
to nest multiple graph queries into a single call.

∙ Sparse fieldsets in the JSON API23 specification realize
the Wish List pattern as well: A client can request that
an endpoint returns only parts of a data element in
the response message.

∙ The PayPal API Guidelines24 use the HTTP header
Prefer: return=minimal to instruct the API endpoint
to return only a minimal representation of the resource.

21https://developers.google.com/google-apps/calendar/performance
22https://developers.facebook.com/docs/graph-api/using-graph-api
23http://jsonapi.org/format/#fetching-sparse-fieldsets
24https://github.com/paypal/api-standards/blob/master/patterns.
md#projected-response

https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developers.google.com/google-apps/calendar/performance
https://developers.facebook.com/docs/graph-api/using-graph-api
http://jsonapi.org/format/#fetching-sparse-fieldsets
https://github.com/paypal/api-standards/blob/master/patterns.md#projected-response
https://developers.google.com/google-apps/calendar/performance
https://developers.facebook.com/docs/graph-api/using-graph-api
http://jsonapi.org/format/#fetching-sparse-fieldsets
https://github.com/paypal/api-standards/blob/master/patterns.md#projected-response
https://github.com/paypal/api-standards/blob/master/patterns.md#projected-response

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Wish List behaviour is also supported via the fields

query parameter.
∙ Atlassian JIRA supports Wish Lists under the name
expansion25 comprehensively, but in a slightly different
way. Initial responses are terse, but contain elements
that can be “expanded” in further requests and are
marked as such. The client can then provide aWish List
of parameters in the query string to be expanded, which
will then be present in the subsequent response. The
same concept is supported by the Confluence REST
API26.

∙ The Microsoft Graph API27 has an expand parameter
with expansion semantics.

∙ The TMForum, an association of telecommunication
providers and suppliers, offers the TMForum REST
API28 which allows query operations to select the re-
source’s attributes that should be returned. Further-
more, it also allows filtering of attributes with various
filter expressions.

∙ A Swiss software vendor specializing on the insurance
industry uses partial representations and expanded
GETs in its internal REST API Design Guidelines.
These guidelines recommend defining a request variable
called fields that lists the requested fields. A wildcard
operator exists; if the fields variable is not present,
all fields must be returned.

∙ Another enterprise information system usage of the
pattern is outlined in [3].

Related Patterns. Wish Template addresses the same problem,
but works with a structure rather than a list of wishes; that
is, Wish List usually uses the Atomic Parameter List pattern
to express the wishes.

Wish List deals with instances of Parameter Tree and
Parameter Forest as “origin” and result data structures,
as the patterns are usually applied to more complex data
structures.

Using a Wish List has a positive influence on a Rate Limit,
as less data is transferred when the pattern is used.

The Pagination pattern also reduces response messages
sizes, but in a different way (by splitting large repetitive
responses into parts).

4.3 Pattern: Rate Limit

a.k.a. Quota, Usage Limitation

Context. An API endpoint and the API contract defining
operations, messages, and data representations have been

25https://docs.atlassian.com/jira/REST/cloud/#expansion
26https://developer.atlassian.com/confdev/
confluence-server-rest-api/expansions-in-the-rest-api
27https://developer.microsoft.com/en-us/graph/docs/concepts/
query parameters
28https://projects.tmforum.org/wiki/display/API/Query+
Resources+Patterns

established. If required, an API Description has been de-
fined that specifies messages exchange patterns and protocol.
Clients of the API might have signed up with the provider
and, if required, have agreed to the terms and conditions that
govern the usage of the endpoint and operations. Alterna-
tively, the offering might not require any contractual relation,
e.g., when offered as an open government data service or
during a trial period.

Problem. How can the API provider prevent API clients from
excessive API usage?29

Forces. When preventing excessive API usage that may harm
provider operations or other clients, the following more de-
tailed design concerns have to be balanced:

∙ How can the provider maintain a high performance for
all clients while properly economizing its resources?

∙ How can a provider prevent a client from abusing the
API, or minimize the impact of excessive and unwanted
usage (fairness)?

∙ How can a provider offer a reliable, cost-efficient service
without overly restricting individual clients’ ability to
use the service?

∙ How can a client control its API consumption (if it
wants or has to save computing and communication
capacity)?

Non-solution. To prevent clients that exhibit an excessive
usage from harming other API clients, one could simply add
more processing power, storage space and network bandwidth.
Often this is not economically viable.

Solution. Introduce and enforce a Rate Limit to safeguard
against API clients that overuse the API.

How it works. Formulate this limit as a certain number
of requests that are allowed per period of time. If the client
exceeds this limit, further requests can either be declined,
be processed in a later period or be serviced by allocating a
smaller amount of resources or by providing only best-effort
guarantees.

Set the scope of the Rate Limit, this can be the entire
API, a single endpoint, a group of operations or an individual
operation: Requests do not need to be treated uniformly,
endpoints can have varying operational costs and token usage
can thus differ. For example, retrieving a simple ID costs a
single token (unit) in the Youtube API30, whereas a video
upload consumes approximately 1600 units.

Define an appropriate time period, for example, daily or
monthly, per API operation or group of API operations after
which the Rate Limit is reset; this interval may be rolling.
Keep track of client calls in the defined time period through
monitoring and logging.

A Rate Limit can also restrict the amount of concurrency
allowed, i.e., the number of concurrent requests a client is

29What exactly is deemed excessive needs to be defined by the API
provider. A flat rate subscription typically imposes different limitations
than a free billing plan. See the Rate Plan pattern for a detailed
discussion of the trade-offs of different subscription models.
30https://developers.google.com/youtube/v3/getting-started#quota

https://docs.atlassian.com/jira/REST/cloud/#expansion
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.microsoft.com/en-us/graph/docs/concepts/query_parameters
https://projects.tmforum.org/wiki/display/API/Query+Resources+Patterns
https://projects.tmforum.org/wiki/display/API/Query+Resources+Patterns
https://docs.atlassian.com/jira/REST/cloud/#expansion
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.atlassian.com/confdev/confluence-server-rest-api/expansions-in-the-rest-api
https://developer.microsoft.com/en-us/graph/docs/concepts/query_parameters
https://developer.microsoft.com/en-us/graph/docs/concepts/query_parameters
https://projects.tmforum.org/wiki/display/API/Query+Resources+Patterns
https://projects.tmforum.org/wiki/display/API/Query+Resources+Patterns
https://developers.google.com/youtube/v3/getting-started#quota
https://developers.google.com/youtube/v3/getting-started#quota

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

allowed to make. For example, under a free billing plan clients
could be limited to just a single concurrent request (see for
instance the Quandl API31).

Example. GitHub uses this pattern to control access to
its RESTful HTTP API: Once a Rate Limit is exceeded,
subsequent requests are answered with HTTP status code
429 Too Many Requests. To inform clients about the current
state of each Rate Limits and to help clients manage their
allowance of tokens, custom HTTP headers are sent with
each rate-limited response.

The following code listing shows an excerpt of such a rate-
limited response from the GitHub API. The API has a limit
of 60 requests per hour, of which 59 remain:

GET https://api.github.com/users/misto

HTTP/1.1 200 OK

...

X-RateLimit-Limit: 60

X-RateLimit-Remaining: 59

X-RateLimit-Reset: 1498811560

The X-RateLimit-Reset indicates the time when the limit
will be reset with a Unix timestamp32.

Implementation hints. Architects and developers applying
Rate Limits should:

∙ Be transparent and polite when communicating Rate
Limits, current status, and the consequences of having
reached them to clients. This can be done by intro-
ducing a grace period or interval, e.g., if you are 10%
over one day, nothing happens, and then more limiting
happens gradually. The current status can be shown
in a management dashboard or as part of the API
response, as in the GitHub example shown above.

∙ As an API client, be parsimonious in your API con-
sumption (e.g., avoid unnecessary calls by using Con-
ditional Requests and consider caching) and keep track
of consumed resources (and/or retrieve provider-side
usage statistics regularly).

∙ As an API provider, be aware that consumers might try
to work around the Rate Limit that you want to enforce,
for instance, by sending periodic “mini batch” requests
shortly after the time window re-opens. This might
lead to undesired and unexpected peak workloads33.

∙ Store the current state of the Rate Limits in a client
database and not just in a stateful session. Otherwise
the client could just open a new session to overcome
the Rate Limit.

∙ Make sure that the implementation of the Rate Limit
algorithms and its supporting metering infrastructure
do not consume more server-side resources than the
throttled or declined client calls would. Rate Limit also

31https://docs.quandl.com/docs/getting-started#section-rate-limits
32Unix timestamps count the number of seconds since January 1st,
1970.
33This has been reported as a problem for the free GitHub service,
consumed by software engineering research teams.

will not protect you from denial-of-service attacks [15]
on a protocol level like a TCP SYN flooding34.

∙ A Leaky Bucket Counter [11] is a natural realization
of a rolling Rate Limit interval. Each client is assigned
a bucket of tokens that is replenished periodically. For
example, if the limit is 1000 requests per minute, the
bucket has a size of 1000 tokens and each 1/1000 minute
a token is added to the bucket, up to a maximum of
1000 tokens. For each request, a token is removed from
the bucket. Once the bucket is empty, further requests
will fail. Alternatively, a simpler solution would be to
limit only the number of calls per billing period.

∙ When also implementing the Wish Template pattern,
a Rate Limit based on the number of API calls will
not treat clients fairly, because a single call might
suddenly return vast amounts of data. This is also a
problem for complex request schemes (e.g. GraphQL35

as used in the Facebook Social Graph36) where the
client can send arbitrary queries to the endpoint and
receives potentially huge responses. Such APIs require
a more sophisticated accounting method than simply
counting the number of requests, possibly including
data volumes into the definition of the limit(s). For an
inspiration on how to implement this, see the GitHub
v4 API37.

Consequences. A Rate Limit gives the provider control over
the client’s API consumption, but deciding on the right limits
is not easy.

Resolution of forces.

+ By implementing a Rate Limit, an API provider can
protect its offering from malicious clients, such as un-
welcome bots, and maintain the quality of its service.

+ The provider can better provision resources due to
capped maximal usage thereby improving performance
and availability for all clients.

− If the Rate Limit is set too high, it will not have
the desired effect. Having it set too low will annoy
API users. Finding the right levels will need some
experimentation and tuning. For example, a provider’s
Rate Plan might allow for 30’000 requests per month.
With no additional restrictions, a client could consume
all these requests in a short burst of time, probably
overwhelming the provider. To mitigate this particular
problem, the provider could additionally restrict clients
to just one request per second.

− Clients need to control their usage and manage the
case of hitting the rate limit, e.g., by tracing their
API usage and/or by queuing requests. This can be
achieved by caching and prioritizing API calls. Systems

34TCP SYN Flooding and IP Spoofing Attacks can be used in denial-
of-service attacks on a protocol level by creating many half-open
connections that are not properly closed and can overwhelm the server:
https://www.cert.org/historical/advisories/CA-1996-21.cfm
35GraphQL is a query language optimized for data organized in graphs.
36https://developers.facebook.com/docs/graph-api
37https://developer.github.com/v4/guides/resource-limitations/

https://docs.quandl.com/docs/getting-started#section-rate-limits
https://docs.quandl.com/docs/getting-started#section-rate-limits
https://developers.facebook.com/docs/graph-api
https://developer.github.com/v4/guides/resource-limitations/
https://developer.github.com/v4/guides/resource-limitations/
https://www.cert.org/historical/advisories/CA-1996-21.cfm
https://developers.facebook.com/docs/graph-api
https://developer.github.com/v4/guides/resource-limitations/

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

management patterns [12] can implement continuous
monitoring of resource usage over time.

Further discussion. Paid offerings are in a better position
to manage Rate Limits with multiple subscription levels and
accordingly different limits; excessive API usage can even
be seen as something positive (because it leads to increased
revenue). But a free service does not have to give all its
clients the same Rate Limit either. It can instead take into
account other metrics to accommodate clients of various
sizes and stages. For example, Facebook38 grants API calls
proportional to the number of users that have the client’s
app installed:

“Your app can make 200 calls per hour per user
in aggregate. As an example, if your app has 100
users, this means that your app can make 20,000
calls.”

When a client has exceeded its Rate Limit, the provider can
stop serving the client altogether or just slow it down (or, for
commercial offerings, offer to upgrade to a higher-paid plan).
This latter case is sometimes also described as throttling. Note
that the exact terminology differs by providers, and often
Rate Limit and throttling are used interchangeably.

If a client is hitting the Rate Limit too often, the account
or corresponding API Key can even be suspended (Twitter39

calls this blacklisted40).
In order to measure and to enforce the rate limit metrics,

the provider needs to identify the client or user. For identi-
fication purposes, the API client has obtained a means to
identify itself at the endpoint (more precisely, at the security
Policy Enforcement Point41 within the API), for instance
with an API Key or an authentication protocol. If no sign-up
is required, for example in a free service, the endpoint has
established another way to identify the client, e.g., by IP
address.

Known Uses. Rate Limits are implemented in many public
Web APIs:

∙ The GitHub API v342 has a 5000 requests per hour per
user limit for authenticated requests. Clients can also
make unauthenticated requests but these are limited to
just 60 requests per hour (as can be seen in the example
above). In the new GraphQL-based GitHub v4 API43,
the Rate Limit has become more sophisticated and
takes into account the number of queried nodes.

38https://developers.facebook.com/docs/graph-api/advanced/
rate-limiting
39Rate Limiting in the Twitter API: https://dev.twitter.com/rest/
public/rate-limiting.
40A blacklist is an access control mechanism that bars certain “black-
listed” elements but lets all others pass. This is in contrast to a whitelist
where only elements that are on a list can pass.
41In the eXtensible Access Control Markup Language, the Pol-
icy Enforcement Point protects a resource from unauthorized ac-
cess: https://www.oasis-open.org/committees/download.php/2713/
Brief Introduction to XACML.html.
42https://developer.github.com/v3/#rate-limiting
43https://developer.github.com/v4/guides/resource-limitations/

∙ Open Weather Map44 calls its rate limits access limi-
tation and restricts clients to a certain amount of calls
per minute, depending on the subscription.

∙ Rate Limits in Quandl45 depend on the subscription
level and also have a limit on the number of concurrent
requests.

∙ The Twitter REST API46 only allows authenticated
clients and has Rate Limits divided into 15 minute
intervals.

∙ LinkedIn47 calls their Rate Limits “request throttling”.
The limits are defined per API call and are defined on
an application, user, and developer level.

∙ The Swiss Federal Administration’s registry of
companies (“UID-Register”) has a public webservice
API48. The API is free to use but is limited to
20 requests per minute. If the limit is exceeded, a
Request limit exceeded error is returned.

∙ Many API Gateways, such as MuleSoft API Manager49,
allow developers to introduce Rate Limits. API gate-
ways often also support throttling to further protect
the exposed APIs.

∙ The open Certificate Authority (CA) Let’s Encrypt50

limits the weekly number of certificates issued per reg-
istered domain, but also provides a renewal exemption.
Its Automatic Certificate Management Environment
(ACME) API also limits the number of accounts that
can be registered by a given IP address every hour.

Some Web frameworks provide Rate Limit as an optional
feature. For example, the Play-Guard51 library for the
Java/Scala Play Framework provides a basic implementation.

Related Patterns. The details of a Rate Limit can be part of
a Service Level Agreement. A Rate Limit can be dependent
on the client’s subscription level, which is further described
in the Rate Plan pattern. In such cases the Rate Limit is
used to enforce different billing levels of the Rate Plan.

To observe individual clients and manage their allowances,
the service provider needs to identify the client making a
request. Therefore, clients need to present some form of
identification (e.g. an API Key, an IP address or another
authentication practice) so that the API provider can do the
bookkeeping.

The current state of the Rate Limit, e.g., how many re-
quests remain in the current billing period, can be communi-
cated via a Context Representation.

The systems management patterns published by [12] can
help to implement metering and can thus also be used as

44http://openweathermap.org/appid
45https://docs.quandl.com/docs#section-authentication
46https://dev.twitter.com/rest/public/rate-limiting
47https://developer.linkedin.com/docs/rest-api
48https://www.bfs.admin.ch/bfs/de/home/register/
unternehmensregister/unternehmens-identifikationsnummer/
uid-register/uid-schnittstellen.assetdetail.1760903.html
49https://docs.mulesoft.com/api-manager/
rate-limiting-and-throttling-sla-based-policies
50https://letsencrypt.org/docs/rate-limits/
51https://github.com/sief/play-guard/blob/master/module/app/
com/digitaltangible/tokenbucket/TokenBucketGroup.scala

https://developers.facebook.com/docs/graph-api/advanced/rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v4/guides/resource-limitations/
https://developers.facebook.com/docs/graph-api/advanced/rate-limiting
https://developers.facebook.com/docs/graph-api/advanced/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v4/guides/resource-limitations/
http://openweathermap.org/appid
https://docs.quandl.com/docs#section-authentication
https://dev.twitter.com/rest/public/rate-limiting
https://developer.linkedin.com/docs/rest-api
https://www.bfs.admin.ch/bfs/de/home/register/unternehmensregister/unternehmens-identifikationsnummer/uid-register/uid-schnittstellen.assetdetail.1760903.html
https://www.bfs.admin.ch/bfs/de/home/register/unternehmensregister/unternehmens-identifikationsnummer/uid-register/uid-schnittstellen.assetdetail.1760903.html
https://docs.mulesoft.com/api-manager/rate-limiting-and-throttling-sla-based-policies
https://letsencrypt.org/docs/rate-limits/
https://github.com/sief/play-guard/blob/master/module/app/com/digitaltangible/tokenbucket/TokenBucketGroup.scala
http://openweathermap.org/appid
https://docs.quandl.com/docs#section-authentication
https://dev.twitter.com/rest/public/rate-limiting
https://developer.linkedin.com/docs/rest-api
https://www.bfs.admin.ch/bfs/de/home/register/unternehmensregister/unternehmens-identifikationsnummer/uid-register/uid-schnittstellen.assetdetail.1760903.html
https://www.bfs.admin.ch/bfs/de/home/register/unternehmensregister/unternehmens-identifikationsnummer/uid-register/uid-schnittstellen.assetdetail.1760903.html
https://www.bfs.admin.ch/bfs/de/home/register/unternehmensregister/unternehmens-identifikationsnummer/uid-register/uid-schnittstellen.assetdetail.1760903.html
https://docs.mulesoft.com/api-manager/rate-limiting-and-throttling-sla-based-policies
https://docs.mulesoft.com/api-manager/rate-limiting-and-throttling-sla-based-policies
https://letsencrypt.org/docs/rate-limits/
https://github.com/sief/play-guard/blob/master/module/app/com/digitaltangible/tokenbucket/TokenBucketGroup.scala
https://github.com/sief/play-guard/blob/master/module/app/com/digitaltangible/tokenbucket/TokenBucketGroup.scala

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

enforcement points. For example, a Control Bus can be used
to increase or decrease certain limits dynamically at runtime.

As discussed above, Leaky Bucket Counter [11] offers a
possible implementation variant for Rate Limit.

4.4 Pattern: Rate Plan

$$$

a.k.a. Pricing Plan, Metering and Billing, Accounting

Context. An API is an asset of the organizations or individ-
uals that have built it. From the viewpoint of commercial
organizations, this means that it has both monetary and
immaterial value. The development and operations of this
asset has to be funded somehow. The API clients can be
charged for API usage, but the API provider can also sell
advertisements or find other means of raising funds.

Problem. How can the API provider meter API service con-
sumption and charge for it?

Forces. When metering and billing, the following concerns
are hard to resolve in a way that is acceptable both for API
clients and providers:

∙ How can an API provider select a pricing model that
balances its own economic interests with those of its
customers and the competition?

∙ How accurately and fine-grained should API consump-
tions be metered to satisfy client’s information needs
without incurring in unnecessary performance penalties
or availability issues?

∙ How can the security of the metering information be
guaranteed but billing accuracy and auditability still
be assured?

Non-solution. One could just invoice the client a flat sign-
up fee, but this would treat hobbyists and high-volume cor-
porate users equally; that is, it would be too cheap for one
user segment and too expensive for the other one.

Solution. Assign a Rate Plan for the API usage to the API
description that is used to bill API clients, advertisers, or
other stakeholders accordingly. Define and monitor metrics
for measuring API usage, such as API usage statistics on a
per-operation level.

How it works. Several variants of Rate Plans exist. The
most common ones are: flat-rate subscription and usage-
based pricing. A market-based allocation is less often seen
(also known as auction-style allocation of resources). All these
plans can be combined with a freemium model where a certain
low or hobbyist usage level is free, and payment only comes
into effect for higher usages or once an initial trial period
expires. Combinations of different plans are also possible, for
example a monthly base flat-rate subscription fee for a base
package and an extra usage-based pricing for additionally
consumed services.

In subscription-based or flat-rate pricing the client is billed
a recurring (e.g., monthly or yearly) fee that is independent
of the actual usage of the service, sometimes in combination
with a Rate Limit to ensure fair use. Within these boundaries,
the subscription typically allows customers for near unlimited
usage and requires less bookkeeping than usage-based pricing.
Alternatively, a provider can offer different billing levels,
from which a user can choose the one that best matches its
expected usage. If a client exceeds its allowance, it can be
given the option to either upgrade to a more expensive billing
level or to have further calls blocked.

A usage-based pricing policy only bills the client for actual
usage (e.g., API calls or amount of data transferred) of the
service resources. The pricing can be varied for different API
calls; for instance, a simple reading of a resource might cost
less than creating a resource. This usage can then be billed
periodically or be offered as prepaid packages (as sometimes
done in mobile telephony contracts) with credits that are then
spent (e.g. when using CloudConvert, a document-conversion
SaaS, clients can purchase packages of conversion minutes
that can then be spent over time).

Elasticmarket-based pricing is a third variant. For a market
to emerge, the price of a resource may have to move in line
with the demand for the service. A client then places a bid
to use the service at a certain maximum price, and when
the market price falls to or below the bid price, the client is
allocated the service until the price rises above the bidding
price again.

These variants of Rate Plans differ in the effort required
to define and update the prices; they have an impact on
attracting and retaining customers. They also differ in their
ambitions to making sustainable profits. Finally, they may
also differ in their scope: entire API endpoint vs. individ-
ual operations, API access vs. actual computing/retrieval
(back-end service) are two such scoping dimensions. Client
developers and application owners are advised to always read
the fine print and run some trials to familiarize themselves
with the billing granularity and operational procedures be-
fore committing to using a particular offering. Architectural
and/or code-level refactoring [25] might be necessary to find
an API usage profile that is both technically and financially
satisfying.

Example. Imagine a fictitious provider offering binary large
object storage as a cloud service, as explained in the Blob
Storage pattern by [8]. The blob files can be stored and
accessed via an API, but clients need to sign up with the
provider first and obtain an API Key.

The provider decided to implement a usage-based Rate
Plan, with a freemium level for low usage and different pricing
levels depending on how much storage is used, as can be seen
in Table 2.

A competitor of the provider, trying to differentiate itself
and wanting to keep the monitoring at a minimum, might
instead decide to go with a flat-rate subscription fee of $20
per month that offers unlimited storage space to clients.

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Table 2: Example of a usage-based Rate Plan of a fictitious

storage provider with different billing levels. The files can
be stored and accessed by an API.

Storage (up to) Pricing per Month

First 5GB Free
Next 95GB $0.15 per GB
Over 100GB $0.14 per GB

Implementation hints. Product owners who decide to spec-
ify a Rate Plan can be advised to:

∙ Consider procuring a commercially-off-the-shelf billing
system instead of building one yourself. Buying or
renting rather than building a billing system is an
executive-level make-or-buy decision due to its strategic
and monetary impact.

∙ Have the metering and billing implementation of the
Rate Plan audited.

∙ Adjust the prices regularly as required to stay competi-
tive in the market. Do not forget to adjust the metering
and performance monitoring accordingly, and update
the API description and the corresponding Service
Level Agreement.

∙ When the Rate Plan depends on the number of API
calls made by the client, think about how to account for
Wish List and Request Bundle calls to implement inte-
gration scenarios that would otherwise require multiple
single API calls.

∙ In many cases it is sufficient to guarantee that metering
data becomes consistent eventually, as described in
[8]; therefore, using a scalable NoSQL database that
does support eventual consisency (rather than strict
consistency) can reduce the performance penalty. A
map-reduce job can be used to aggregate metering data
periodically.

∙ For a Community API, billing could be done per client
organization, not on the level of individual API clients
in the organizations.

∙ When implementing usage-based pricing, each API call
needs to be logged in a non-repudiable manner. If an
API Gateway [19] is used, it is a good place to imple-
ment metering. This could be as simple as counting
the number of API calls. Alternatively, event sourcing
and storing the whole request is also an option, which
allows API providers to analyze the API usage per
client and establish an audit trail. Clients might also
want to track their usage on the client side to be able
to validate the API provider’s metering.

∙ If your application is run by a cloud provider, existing
API Gateway offerings might provide this functionality
already. For example, the Amazon API Gateway52 “me-
ters traffic to your APIs and lets you extract utilization
data for each API key”.

52https://aws.amazon.com/api-gateway/faqs/?nc1=f ls

Consequences. A Rate Plan resolves most of the above forces.
Security guarantees, however, have to be satisfied by the
underlying implementation.

Resolution of forces.

+ By using a Rate Plan customers and the provider have
a clear agreement of incurring costs and obligations.

− Writing and publishing sensible Rate Plans is hard and
requires much knowledge about client’s interests and
business models on client and provider side.

− API clients need to be identified by an API Key or
some other means of authentication mechanism.

− Usage-based pricing requires a detailed monitoring and
measurement of a client’s actions. To avoid disputes,
the client will want detailed reporting to track and
monitor their usage. This requires more effort on the
provider’s side. Limits can be put in place that trigger
a notification when exceeded.

Further discussion. Another consideration is how to deal
with outages of the metering functions of the Rate Plan imple-
mentation: if metering cannot be performed, it is impossible
to later bill the client for its consumption. Consequently, the
API has to be shut down until the metering system is avail-
able again or the service has to be provided for free during
the outage.

Known Uses. Rate Plans are widely used by commercial of-
ferings of all kinds:

∙ Business Support Systems (BSS) have been used in
telecommunications for a long time; many mature
billing and metering solutions exist in this industry.
The TM Forum Applications Framework 3.053 cov-
ers these and other related business capabilities on a
platform-independent level.

∙ A dynamic interface to a core banking backend [3]
allows implementing usage-based pricing per operation
type; a banking customer portfolio lookup may have a
different price than an account balance check.

∙ AWS Lambda54 implements usage-based pricing with
a free-tier of one million requests per month and $0.20
for each further million requests.

∙ Amazon S355 is an example of usage-based pricing
of storage capacity and operations performed on the
storage. It also comes with several pricing tiers and
volume discounts.

∙ CloudConvert56 offers both prepaid packages of
conversion-minutes as well as different monthly
subscriptions.

∙ Amazon EC2 Spot Instances57 use market-based pric-
ing.

53https://fenix.tecnico.ulisboa.pt/downloadFile/3779580051402/
TM Forum Applications Framework 3-2.pdf
54https://aws.amazon.com/lambda/pricing/
55https://aws.amazon.com/s3/pricing/
56https://cloudconvert.com/pricing
57https://aws.amazon.com/ec2/spot/

https://aws.amazon.com/api-gateway/faqs/?nc1=f_ls
https://aws.amazon.com/api-gateway/faqs/?nc1=f_ls
https://fenix.tecnico.ulisboa.pt/downloadFile/3779580051402/TM_Forum_Applications_Framework_3-2.pdf
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://cloudconvert.com/pricing
https://aws.amazon.com/ec2/spot/
https://fenix.tecnico.ulisboa.pt/downloadFile/3779580051402/TM_Forum_Applications_Framework_3-2.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/3779580051402/TM_Forum_Applications_Framework_3-2.pdf
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://cloudconvert.com/pricing
https://aws.amazon.com/ec2/spot/

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

Related Patterns. A Rate Plan can use Rate Limits to enforce
different billing levels. If used, the Rate Plan should refer to
the Service Level Agreement.

To identify the client making a request, an API Key can
be used (or another authentication practice).

API Gateways [19] and the systems management patterns
in [12], especially Wire Tap, can be used to implement meter-
ing and can thus also be used as enforcement points. A Wire
Tap can be inserted between the source and destination of a
message to copy incoming messages to a secondary channel
or a Message Store that is used to count the requests per
client without having to implement this at the API endpoint.

4.5 Pattern: Service Level Agreement

a.k.a. Quality-of-Service Policies, Explicit and Structured
Quality Goals

Context. An API contract or an API Description has been
defined for the API, including the functional interface specifi-
cation (i.e., request and response messages with parameters)
of the operations. The dynamic behavior of the API’s opera-
tions when being invoked has not been articulated precisely
yet in terms of its qualitative and quantitative Quality-of-
Service (QoS) characteristics. Furthermore, the support of
the service along its lifecycle has not been precisely artic-
ulated either (e.g., guaranteed lifetime and mean time to
repair).

Problem. How can an API client learn about the specific
quality-of-service characteristics of an API and its operations?
How can these characteristics, and the consequences of not
meeting them, be defined and communicated in a measurable
way?

Forces. Partially conflicting concerns make it hard to specify
QoS characteristics in a way that is acceptable both for clients
and providers. Specifically, the following questions have to
be answered:

∙ How can a client decide whether a provider’s offerings
match the client’s business needs from a business agility
and vitality point of view?

∙ How can a client learn about a provider’s compliance
with government regulations, security and privacy mea-
sures and other legal obligations?

∙ How can an API provider communicate the attractive-
ness, availability and performance goals of its services
to clients (assuming that more than one provider of-
fers a certain functionality) without making unrealistic
promises that may cause client dissatisfaction or even
financial losses?

∙ How can a provider strike a balance between econo-
mizing its available resources and making a profit (or

keep costs at a minimum – e.g., for open government
offerings)?

∙ What is the right level of detail for QoS specifications,
avoiding underspecification (which may lead to tension
between clients and providers) and overspecification
(which may cause a lot of effort in development, opera-
tions, and maintenance)?

Non-solution. The client could simply trust the provider to
make commercially and technically reasonable efforts to pro-
vide a satisfying API usage experience, and in many public
APIs as well as solution-internal APIs this is the only or the
preferred option. However, if API usage is business critical
for the client , the resulting risk might not be tolerable. One
might rely on unstructured, free-form text that states the
commercial and technical terms and conditions of API usage,
and many public APIs provide such documents. However,
such natural language documents are ambiguous and leave
room for interpretations which might lead to misunderstand-
ings and, in turn, to critical project situations. They might
no longer be sufficient when competitive pressure increases.
When not having any alternative or room for negotiating
a customized agreement, deciding on using an API simply
comes down to trusting the provider and/or predicting its fu-
ture QoS characteristics based on historical data and previous
experiences.

Solution. As an API product owner, define a structured Ser-
vice Level Agreement (SLA) and write it up in an assertive,
unambiguous way: the SLA must identify the specific API
operation(s) that it pertains to and must contain at least
one measurable Service Level Objective (SLO). An SLO must
specify a measurable aspect of the API, such as performance,
scalability, or availability.

How it works. In any Service Level Agreement, define SLOs
as well as penalties, compensation credits or actions, and
reporting procedures for violations of the SLA. As API client
developer, study the SLA and its SLOs carefully before com-
mitting to use a given API. The SLA structure should be
recognizable, ideally even standardized across offerings.

Derive the SLOs for each controlled service from specific
and measurable Quality Attributes (QAs) that are relevant
for the API and ideally have been specified during service
analysis and design activities [4]. SLOs can also arise from
regulatory guidelines; for example, personal data protection
laws might mandate that data is erased once it is no longer
needed. SLOs can be broadly grouped into different categories.
For example, the European Commission’s SLA guidelines [5]
categorizes SLOs into those for Performance, Security, Data
Management and Personal Data Protection.

In each SLO that coresponds to a particular quality at-
tribute, specify a threshold value and the unit of measurement.
Give a guarantee (minimum percentage) for how much of the
time it will be met and a penalty in case it is not achieved. For
example, an SLO might be “met for 99% of the requests” and
have a “discount credit of 10%” as a penalty. It is important

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

to clearly state how the measurement will be performed and
interpreted to avoid confusion and unrealistic expectations.

When defining the SLA, involve all relevant internal and
external stakeholders early (e.g., C-level executives, legal
department, security officer). API providers should let the
SLA specification be reviewed and approved by a well-defined
set of these stakeholders (e.g., the legal department). Plan
ahead as several iterations are typically required, which might
be rather time consuming due to busy schedules; agreeing on
SLA content and wording is a negotiation process.58

See the implementation hints section below for some advice
regarding good vs. bad SLAs.

Example. Imagine a fictitious SaaS provider, offering a
salary administration software including an API for a payroll
service. The provider states that:

“The payroll service has a response time of max-
imally 0.93 seconds.”

The response time might need some clarification:

“The response time is measured from the time
the request arrives at the API endpoint until the
response has been fully processed.”

Note that this does not include the time it takes for the
request and response to travel across the network from the
provider’s API endpoint to the client’s endpoint. Furthermore,
the provider assures:

“The Payroll SLO will be met for 99% of the
requests, otherwise the customer will receive a
discount credit of 10% on the current billing
period. To receive a credit the customer must
submit a claim to our customer support center
including the dates and times of the incident.”

Implementation hints. As the API product owner or ar-
chitect, consider the following when writing a Service Level
Agreement :

∙ Find a balance between being attractive (or at least
competitive) and, at the same time, being trustworthy
and accountable in your SLA and SLO commitments.
You may want to define (and design/test against) an
internal SLA that is more aggressive than the commu-
nicated and agreed external one.

∙ From the provider side, consider cloud deployment elas-
ticity and scale out tactics if SLO targets are endan-
gered [8]; from the consumer side, consider switching to
a backup provider. On both provider and client sides,
make sure to permanently monitor all relevant quali-
ties. For the provider this is important to keep track of
the state of your SLOs at any time (for improvement
and accountability) and to detect where you might
have problems; for the clients this is important in order
to judge whether the provider has met the specified
objectives or.

58In some enterprises, supporting functions have a reputation of being
slow to respond; if responding at all eventually, some of them come
across as “Dr. No”.

∙ Define a common or at least API-wide SLA template
that serves as a guidance for providers and can easily be
recognized by clients. SLOs are runtime or operational
quality goals and, as such, should be specified in a
SMART way (i.e., specific, measurable, agreed upon,
realistic and timed59).

∙ Consider to complement the human-readable SLOs
with machine-readable representations, e.g., by offering
endpoints where the system’s health can be observed, so
that automated approaches such as elastic autoscaling
or instant redeployment can be supported if there is a
risk of an SLA violation.

∙ Consider following the European Commission’s SLA
guidelines [5] if your API will be used by European
clients.

If an SLA is over-achieved over a longer period of time,
consumers might come to expect the higher qualities and
take them for granted. This might suggest to manage ser-
vices/systems in such a way that the SLAs are met exactly,
without exceeding them much. For availability SLAs, delib-
erately making the service/system unavailable temporarily
is one less obvious option when following a “principle that
availability shouldn’t be much better than the SLO”60.

According to a Dimension Data [6], an IT services company
and IaaS cloud provider, an SLA should answer questions
such as:

1. When does uptime and availability calculation start?
2. Do the API clients have to make any provisions to be

covered by the SLA?
3. Does a severe performance degradation, e.g. very high

latency or low throughput, count differently than a
hard downtime?

4. Are penalties for SLA violations defined? Does the
client get a refund or just a credit for future usage?

5. What steps does the client need to take to request
such a credit? Who needs to prove that the outage
happened?

As a provider, make sure these questions can be answered
unambiguously.

Consequences. The main target audience for this pattern is
the API product owner on the provider side rather than
the developers of API operations. An SLA often is part of
the API provider’s terms and conditions (of services) or a
master service agreement, along with other policies such as
an “acceptable use policy” or a “privacy policy”. The SLA
can resolve all the previously introduced forces:

Resolution of forces.

+ Clients establish a shared understanding with the
provider concerning service levels and quality levels
that can be expected.

59See Service Level Agreement – Best Practices & Crucial El-
ements: https://www.userlike.com/en/blog/service-level-agreement-
best-practices for a discussion of the SMART models and SLAs.
60https://cloudplatform.googleblog.com/2018/07/
sre-fundamentals-slis-slas-and-slos.html

https://cloudplatform.googleblog.com/2018/07/sre-fundamentals-slis-slas-and-slos.html
https://cloudplatform.googleblog.com/2018/07/sre-fundamentals-slis-slas-and-slos.html
https://cloudplatform.googleblog.com/2018/07/sre-fundamentals-slis-slas-and-slos.html
https://cloudplatform.googleblog.com/2018/07/sre-fundamentals-slis-slas-and-slos.html

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso

+ An SLA can target all services of a provider or just
specific operations exposed at a particular endpoint.
For example, SLOs relating to a personal data protec-
tion regulation will likely be handled in an overall SLA,
but data management objectives – e.g. data backup
frequency – might differ per endpoint and service op-
eration.

+ Well-crafted SLAs with measurable SLOs are an indica-
tor of service maturity and transparency and are able
to resolve the outlined forces when implemented and
monitored properly. Rather surprisingly, many public
APIs and cloud offerings did not expose any, or only
rather weak, SLAs (which can be attributed to market
dynamics and lack of regulation) at the time of writing.

− The provider can be held accountable for failing to
provide the service. Sometimes organizations do not
want to be held accountable for their failures. Estab-
lishing clearly defined obligations like a Service Level
Agreement might therefore hit internal organizational
resistance.

Further discussion. It only makes sense to define SLAs and
precise SLOs, and publish them to clients, if this is required
(and paid for) by clients or is seen as beneficial from a business
point of view. Otherwise SLAs are an unnecessary business
risk as they are often legally binding and it might actually be
hard to fulfill them at all times; if it is not needed, why offer
such a strong guarantee? SLAs require substantial effort to
be designed, implemented, and monitored; mitigating SLA
violations also causes work. Maintaining operations personnel
to quickly deal with SLA violations is also expensive. Business
risks can be mitigated by limiting the liability of the API
provider, e.g., to offer service credits as the only remedy for
SLA violations.

Alternatives to an SLA with formally specified SLOs, as
suggested in this pattern, are to define no SLAs or to set
quality goals in more vague terms (i.e., SLA with informally
specified SLOs). For instance, some security aspects are often
defined in more vague terms, as they are hard to capture
formally. Please note that formal and informal SLOs can also
be combined in one SLA.

SLAs can be beneficial to the API provider even in the
form of an internal SLA – yielding a variant of the pattern in
which the API provider uses the SLA to specify and measure
its own performance on relevant qualities, but does not share
this information with clients external to the organization.

Known Uses. Many Public APIs on the Web do not expose
explicit SLAs, but ask their users to agree with their terms
and conditions, which may cover related topics. Usually, no
hard guarantees are given; the SLOs are only outlined and not
specified formally. However, many public cloud providers have
explicit SLAs, for instance Amazon Web Services (AWS) and
Microsoft Azure. At the time of writing, SLAs are provided
by these public cloud providers and offerings:

∙ Amazon EC261 commits to an SLO of a “Monthly Up-
time Percentage” that is specified in terms of “minutes
during the month in which Amazon EC2 [..] was in the
state of Region Unavailable”, which is further specified
in the agreement.

∙ Microsoft Azure SLA for Functions62 also defines a
“Monthly Uptime Percentage” that is calculated as
“Monthly Uptime % = (Maximum Available Minutes-
Downtime)/(Maximum Available Minutes) x 100”. The
SLA goes on to further specify downtime and “Max-
imum Available Minutes”. It limits the liability of
Microsoft for downtimes to service credits as the only
remedy for SLA violations.

∙ The combination of a precise uptime guarantee with
service credits as the only compensation is a commonly
used SLA variant. Two other examples using it are
Singlewire63 and Microsoft Dynamics CRM64.

∙ Google Compute Engine65 gives a similar uptime guar-
antee but makes it conditional on the client having its
instances “hosted across two or more zones in the same
region combined with the inability to launch replace-
ment Instances in any zone in that region”. Downtime
is measured as “a period of one or more consecutive
minutes of Downtime. Partial minutes or Intermittent
Downtime for a period of less than one minute will not
be counted towards any Downtime Periods.”

∙ SLAs are commonly used in strategic outsourcing and
application management services ([14]), for instance
to govern help desk response times and patch delivery
(e.g., bug fixes of different severities).

∙ Known uses can also be found in the data-
base/information management community66 and
Chapter 5 of [13].

∙ Optimizely defines in its Service Agreement67 that it
“agrees to maintain commercially reasonable technical
and organizational measures designed to secure its sys-
tems from unauthorized disclosure and modification”
and lists a few such measures explicitly like “storing
Customer Data on servers located in a physically se-
cured location” and “using firewalls, access controls,
and similar security technology”. SLA parts about se-
curity often stay at this level of an SLA with informally
specified SLOs, as security is a quality that is hard to
quantify.

Related Patterns. A Service Level Agreement accompanies the
API contract or the API Description (which would refer to
the Service Level Agreement). SLAs may govern the usage
of instances of many patterns in this pattern language, such

61https://aws.amazon.com/ec2/sla/
62https://azure.microsoft.com/en-us/support/legal/sla/functions/
v1 0/
63https://www.singlewire.com/SLA
64https://port.crm.dynamics.com/portal/static/1033/sla.htm
65https://cloud.google.com/compute/sla
66http://www.2015.summersoc.eu/wp-content/uploads/2015/07/2.2.
Kreta-2015-Website.pdf
67https://www.optimizely.com/terms/

https://aws.amazon.com/ec2/sla/
https://azure.microsoft.com/en-us/support/legal/sla/functions/v1_0/
https://www.singlewire.com/SLA
https://port.crm.dynamics.com/portal/static/1033/sla.htm
https://cloud.google.com/compute/sla
http://www.2015.summersoc.eu/wp-content/uploads/2015/07/2.2.Kreta-2015-Website.pdf
http://www.2015.summersoc.eu/wp-content/uploads/2015/07/2.2.Kreta-2015-Website.pdf
https://www.optimizely.com/terms/
https://aws.amazon.com/ec2/sla/
https://azure.microsoft.com/en-us/support/legal/sla/functions/v1_0/
https://azure.microsoft.com/en-us/support/legal/sla/functions/v1_0/
https://www.singlewire.com/SLA
https://port.crm.dynamics.com/portal/static/1033/sla.htm
https://cloud.google.com/compute/sla
http://www.2015.summersoc.eu/wp-content/uploads/2015/07/2.2.Kreta-2015-Website.pdf
http://www.2015.summersoc.eu/wp-content/uploads/2015/07/2.2.Kreta-2015-Website.pdf
https://www.optimizely.com/terms/

Interface Quality Patterns EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

as those in the representation and quality categories of this
pattern language.

The details of Rate Limits and Rate Plans can be included
in a Service Level Agreement.

5 SUMMARY AND OUTLOOK

In this paper, we described and presented the second set of
patterns – consisting of five patterns – from a more complete
pattern language envisioned to offer help and guidance for
API designers and API product owners. The presented pat-
terns focus on quality characteristics of an API and their
negotiation and agreement: By applying relevant patterns,
designers and product owners can a) strengthen desired qual-
ity attributes and b) communicate the quality properties to
other stakeholders – first and foremost, their API clients,
but also other stakeholders such as operations roles, risk
managers, and auditors.

In the future, we consider to extend our pattern collec-
tion with further patterns that belong to other categories:
for instance, additional structural representation patterns
as well as patterns concerning the architectural roles and
responsibilities of operations within an API are currently
being mined, captured, and validated.

ACKNOWLEDGMENTS

We want to thank our shepherds, students and members of our
professional networks who helped to investigate public Web
APIs, donated candidate forces and patterns, and reviewed
early drafts of pattern candidates and language structure,
including Joseph Corneli, Nicolas Dipner, Antonio Gámez
Dı́az, Reto Fankhauser, Andrei Furda, Alex Gfeller, Gregor
Hohpe, Hans-Peter Hoidn, Stefan Holtel, Ana Ivanchikj, Seb-
nem Kaslack, Michael Krisper, Padmalata Nistala, Philipp
Oser, Andreas Sahlbach, Niels Seidel, Peter Sommerlad, Toni
Suter, Dominic Ullmann and Robert Weiser.

REFERENCES
[1] Subbu Allamaraju. 2010. RESTful Web Services Cookbook.

O’Reilly.
[2] Mario R Barbacci, Robert J Ellison, Anthony Lattanze, Judith

Stafford, Charles B Weinstock, and William Wood. 2002. Quality
attribute workshops. (2002).

[3] Michael Brandner, Michael Craes, Frank Oellermann, and Olaf
Zimmermann. 2004. Web services-oriented architecture in produc-
tion in the finance industry. Informatik-Spektrum 27, 2 (2004),
136–145. https://doi.org/10.1007/s00287-004-0380-2

[4] Humberto Cervantes and Rick Kazman. 2016. Designing Software
Architectures: A Practical Approach (1st ed.). Addison-Wesley
Professional.

[5] Service Level Agreements Subgroup Cloud Select Industry Group
(C-SIG). 2014. Cloud Service Level Agreement Standardisation
Guidelines. https://ec.europa.eu/digital-agenda/news-redirect/
16934. (2014).

[6] Dimension Data. 2013. Comparing Public Cloud Service
Level Agreements. https://www.dimensiondata.com/Global/
Downloadable%20Documents/Comparing%20Public%20Cloud%
20Service%20Level%20Agreements%20White%20Paper.pdf.
(2013).

[7] Stephen Farrell. 2009. API Keys to the Kingdom. IEEE Internet
Computing 5 (2009), 91–93.

[8] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schu-
peck, and Peter Arbitter. 2014. Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud Applica-
tions. Springer.

[9] Martin Fowler. 2002. Patterns of Enterprise Application Archi-
tecture. Addison-Wesley.

[10] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes.
2017. An Analysis of RESTful APIs Offerings in the Industry. In
Proc. of the 15th International Conference on Service-Oriented
Computing (ICSOC 2017). Springer, 589–604.

[11] Robert Hanmer. 2007. Patterns for Fault Tolerant Software.
Wiley.

[12] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solu-
tions. Addison-Wesley.

[13] Wolfgang Lehner and Kai-Uwe Sattler. 2013. Cloud-Specific
Services for Data Management. Springer New York, New York,
NY, 137–160. https://doi.org/10.1007/978-1-4614-6856-1 5

[14] Christoph Miksovic and Olaf Zimmermann. 2011. Architec-
turally Significant Requirements, Reference Architecture, and
Metamodel for Knowledge Management in Information Tech-
nology Services. In 9th Working IEEE/IFIP Conference on
Software Architecture, WICSA 2011, Boulder, Colorado, USA,
June 20-24, 2011. IEEE Computer Society, 270–279. https:
//doi.org/10.1109/WICSA.2011.43

[15] Jelena Mirkovic and Peter Reiher. 2004. A taxonomy of DDoS at-
tack and DDoS defense mechanisms. ACM SIGCOMM Computer
Communication Review 34, 2 (2004), 39–53.

[16] Michael Nygard. 2018. Release It! Design and Deploy Production-
Ready Software (2nd ed.). Pragmatic Bookshelf.

[17] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing
Systems into Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–
1058. https://doi.org/10.1145/361598.361623

[18] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pat-
tern Language for RESTful Conversations. In Proceedings of the
21st European Conference on Pattern Languages of Programs
(EuroPLoP). Irsee, Germany.

[19] Chris Richardson. 2016. Microservice Architecture. http://
microservices.io. (2016).

[20] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybert-
son, Frank Buschmann, and Peter Sommerlad. 2006. Security
Patterns: Integrating security and systems engineering. John
Wiley & Sons.

[21] Prabath Siriwardena. 2014. Advanced API Security: Secur-
ing APIs with OAuth 2.0, OpenID Connect, JWS, and JWE.
Apress.

[22] Phil Sturgeon. 2016. Build APIs you won’t hate. LeanPub,
https://leanpub.com/build-apis-you-wont-hate.

[23] Chris Wood, Art Anthony, Arnaud Lauret, and Kristopher San-
doval. 2016. The API Economy: Disruption and the Busi-
ness of APIs. Nordic APIs AB, Stockholm, Sweden. https:
//nordicapis.com/api-ebooks/the-api-economy/

[24] Olaf Zimmermann. 2009. An architectural decision model-
ing framework for service-oriented architecture design. Ph.D.
Dissertation. University of Stuttgart, Germany. http://elib.
uni-stuttgart.de/opus/volltexte/2010/5228/

[25] O. Zimmermann. 2015. Architectural Refactoring: A Task-Centric
View on Software Evolution. IEEE Software 32, 2 (Mar.-Apr.
2015), 26–29. https://doi.org/10.1109/MS.2015.37

[26] Olaf Zimmermann. 2017. Microservices Tenets. Comput.
Sci. 32, 3-4 (July 2017), 301–310. https://doi.org/10.1007/
s00450-016-0337-0

[27] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun.
2017. Interface Representation Patterns: Crafting and Consum-
ing Message-Based Remote APIs. In Proceedings of the 22nd
European Conference on Pattern Languages of Programs (Euro-
PLoP ’17). ACM, Article 27, 36 pages. https://doi.org/10.1145/
3147704.3147734

https://doi.org/10.1007/s00287-004-0380-2
https://ec.europa.eu/digital-agenda/news-redirect/16934
https://ec.europa.eu/digital-agenda/news-redirect/16934
https://www.dimensiondata.com/Global/Downloadable%20Documents/Comparing%20Public%20Cloud%20Service%20Level%20Agreements%20White%20Paper.pdf
https://www.dimensiondata.com/Global/Downloadable%20Documents/Comparing%20Public%20Cloud%20Service%20Level%20Agreements%20White%20Paper.pdf
https://www.dimensiondata.com/Global/Downloadable%20Documents/Comparing%20Public%20Cloud%20Service%20Level%20Agreements%20White%20Paper.pdf
https://doi.org/10.1007/978-1-4614-6856-1_5
https://doi.org/10.1109/WICSA.2011.43
https://doi.org/10.1109/WICSA.2011.43
https://doi.org/10.1145/361598.361623
http://microservices.io
http://microservices.io
https://nordicapis.com/api-ebooks/the-api-economy/
https://nordicapis.com/api-ebooks/the-api-economy/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/3147704.3147734

	Abstract
	1 Introduction
	2 Relations to other Patterns and Pattern Languages
	3 Basic Abstractions and Concepts
	4 Patterns for Communicating and Improving Interface Quality
	4.1 Pattern: API Key
	4.2 Pattern: Wish List
	4.3 Pattern: Rate Limit
	4.4 Pattern: Rate Plan
	4.5 Pattern: Service Level Agreement

	5 Summary and Outlook
	References

