Engineering Autonomic Controllers For
Virtualized Web Applications

Giovanni Toffetti!, Alessio Gambi!,

Mauro Pezzé!:2, and Cesare Pautasso!

!University of Lugano 2University of Milano Bicocca
6904, Lugano, Switzerland 20126, Milan, Italy

Abstract. Modern Web applications are often hosted in a virtualized
cloud computing infrastructure, and can dynamically scale in response
to unpredictable changes in the workload to guarantee a given service
level agreement. In this paper we propose to use Kriging surrogate mod-
els to approximate the performance profile of virtualized, multi-tier Web
applications. The model is first built through a set of automated and
controlled experiments at staging time, and can be later updated and
refined by monitoring the Web application deployed in production. We
claim that surrogate modeling makes a very good candidate for a model-
driven approach to the engineering of an autonomic controller. Our ex-
perimental evaluation shows that the model predictions are faithful to the
observed system’s performance, they improve with an increasing amount
of samples and they can be computed quickly. We also provide evidence
that the model can be effectively used to synthetize an aggregated ob-
jective function, a critical component of the autonomic controller. The
approach is evaluated in the context of a RESTful Web service compo-
sition case study deployed on the RESERVOIR cloud.

1 Introduction

More and more Web applications are hosted in Cloud computing environments
to reduce their operational and maintenance costs. Cloud infrastructures build
upon virtualization technology to simplify the deployment of Web applications
and to enable application resources to be controlled dynamically [12]. Clouds
offer the necessary flexibility to scale Web applications in order to support a
variable number of clients during the runtime. These capabilities need to be
balanced against increasing performance overhead and architecture complexity.
Whereas the performance overhead may be acceptable for many applications
[16], the problem of finding suitable deployment configurations of virtualized
Web applications facing unpredictable client demand changes remains open.

In this paper we focus on multi-tier Web applications that are executed within
virtualized infrastructures, and propose a method for automatically reconfiguring
these applications in response to sudden and unpredictable changes in client
workload that may derive for example from flash crowd or periodic peaks [2].

Introducing resource virtualization technology in infrastructures that host
Web applications requires both to determine how many replicas of the Web
application components to instantiate, and to address many details that include:
how to assign each virtualized component to the physical resources, how to size
the resources (CPU and memory) allocated to each virtual machine, how to bind
service replicas with one another, and how to optimally distribute the client
workload over a heterogeneous set of resources. Thus, the layer of abstraction
introduced by virtualization in the Web application architecture augments the
set of possible configuration decisions, and makes it very difficult to predict the
effects of reconfiguration actions on the overall system performance.

To address these problems, we propose a model-driven approach to engineer
an effective autonomic controller. Our models capture the relationship between
many tunable configuration parameters and the expected performance of the
Web application. In particular, we show how to apply multi-dimensional sur-
rogate models [19] to study and predict the performance of virtualized Web
applications. As more samples are observed, the prediction error of the models
is reduced. We use the model to construct a utility function that can drive the
controller self-configuration decisions. As opposed to other modeling approaches,
the advantages of using surrogate models in this context are manifold. First, sur-
rogate models are independent from the actual system complexity. As such, they
can quickly predict the expected system behaviour [19]. They provide confidence
measures that indicate the possible directions to follow when searching for opti-
mal configurations. They effectively deal with highly-dimensional configuration
spaces, and can be quickly updated at runtime. Thus, they support a continuous
learning and prediction improving process. We use surrogate models to bridge
the gap between measured non-functional system properties, like responsiveness,
availability, and throughput, and the system configuration, to approximate the
complex and unknown relation between them.

The rest of this paper is structured as follows. Section 2 defines the con-
text and the architecture of the autonomic controller. Section 3 describes the
case study use in this paper. Section 4 validates the approach experimentally
by discussing the main research questions, the experimental methodology, the
experimental results and their effective adoption for control. Section 5 outlines
the related work. Finally, Section 6 summarizes the main contribution of this
paper and delineates future research directions.

2 Architecture

Figure 1 shows the key elements of a virtualized Web application, and sketches
a high-level representation of the controller architecture. The controlled system
is composed of the virtualized Web application that runs on top of the physical
hardware and network infrastructure. The system is designed with a public ser-
vice interface and an internal management interface. The public service interface
is used by the clients of the Web application, while the management interface en-

ables both the monitoring of the system configuration (SC) and its performance
(P) and the application of reconfiguration control actions (A).

N
{ P J W
D%?\:SI < SURROGATE | | Workload | .'g.g'g'g.
| MODEL Predictor | mm‘n‘
{ A ﬂ‘
P
A
Monitor Interface
Lso

Control |
Interface !
I

Fig. 1. Logical architecture of an autonomic, virtualized Web application

In production, the system is subject to a varying client workload (W) that can
be characterized according to different dimensions (for instance, average inter-
arrival times of request per request type, average request size, workload mix).
We assume that the controller does not limit admission to the services and thus
the workload cannot be altered by the controller. However, the controller could
be fed both with information about the current workload (W) and the predicted
future workload (W*). In control-theoretical terms, the workload is generally
represented as a disturbance, that is a non-controllable system input [22]. The
controller internal representation of the system is kept up-to-date by monitoring
both layers of the controlled system. Monitoring data (the system output) com-
ing from both the virtualized Web application components and the underlying
physical infrastructure include the current system configuration, environmental
information, as well as key performance indicators (KPIs) such as workload and
performance measurements (for example, response times, throughputs and SLA
violations). The KPIs are commonly used to express the goals (or service-level
objectives, SLOs) of the controller. The controller aims to determine the optimal
system configuration (control input) that meets the goals required to ensure that
the performance of the Web application is acceptable.

Autonomic control approaches are characterized by the so-called MAPE-K
closed-loop model, named after the basic activities that comprise the loop: Mon-
itor, Analise, Plan and Execute with Knowledge [3, 8]. Autonomic controllers are
driven by control policies that express their main goals. For instance a control
policy may give highest priority to preventing SLA violations, and, once SLAs
are guaranteed, it may minimize the operational costs. Controllers monitor the

systems key performance indicators that characterize the service quality. They
analyse the collected data to diagnose for instance (potential) SLA violations.
They plan a strategy to meet the control goals using knowledge about the ex-
pected system behaviour, usually expressed as models. They execute the control
actions that implement the strategy. Finally, they evaluate the effects of the
control actions updating their knowledge.

In a Cloud computing scenario, the possible control actions are amenable to
virtual machine instantiation, de-instantiation, and placement, as well as setting
the system to a specific point of its configuration space. In this paper, we focus
on the critical Knowledge component of a controller. This component provides
the configuration analyzer with the essential information to self-configure the
virtualized Web application, as it contains the representation of the system used
to find the appropriate configuration for a specific goal.

We capture the essential information of the knowledge component with sur-
rogate models, that are mathematical approximations of unknown complex func-
tions built from sampling [19]. Surrogate models provide both a predicted value
and an accuracy measure of the actual function. They are widely used in engi-
neering, when the sampling process is expensive, the exploration of the complete
design space is not feasible, and an upper-bounded approximation is tolerable.
For example, surrogate models are often used to reduce the highly expensive
computer simulations or controlled experiments when exploring a vast design or
configuration space.

Among many possible surrogate models, we use Kriging models [18] that in-
terpolate the space with Gaussian processes to approximate the system behavior
sampled through controlled experiments. Kriging models fit well our problem
domain for several reasons. Modern Kriging provides an exact sample interpo-
lation, i.e., the predicted outputs for the inputs that correspond to the samples
match the measured outputs. Having a model that matches the samples exactly
is important for the reliability of the predictions, and is often required in com-
puter aided engineering. Kriging models cover the whole parameter space (the
experimental area), thus they often produce better predictions than regression
analysis [18]. Also, thanks to their excellent performance properties, Kriging
models can be efficiently used to build controllers for run-time adaptation of the
Web application configurations. As we show in this paper, Kriging models can
be computed quickly, also in presence of many samples, and thus can deal with
frequent updates.

3 Case Study

In our investigations we consider a composite RESTful Web service called Doo-
dle Restaurant Map (DoReMap) [13]. DoReMap manages voting polls that are
mashed up with a well-known map widget and facilitate agreements on nearby
restaurants.

Users query the service for restaurants in the vicinity of a particular location.
The service identifies a set of restaurants, and uses it to automatically create a

Doodle-Restaurant-Map i

Title : [sps1 N “%} &
Initiator : ’@(% & &
- v N\ h >
Description : N\ Ponte 5 <
Ponte T
City : nte Tresa ",

Viconago

1 Lavena\,
Max participants : Ponte Tresa
[Run & \
- . Nnneda [é V\
\/ Google CHAAY,
~ v P
Your poll has been created. | CentoBar | [Giardino | [TresaBay |
~ice [N
Poll title:
A dinner for (more) than two co [DN (R
Participation Link: ‘ ‘ ’—‘ ’—‘ ’—‘
[poll/1154 -

T @
-

Fig. 2. The Doodle Restaurant Map (DoReMap) Web Application

voting poll so that users can cast their vote for a particular restaurant. To ease
the choice, the voting poll is augmented with a map that shows the location of
each restaurant.

Figure 2 visualizes the three main steps comprising the use of this service:
(1) A user playing the role of initiator submits a poll creation form; (2) the
system creates the poll and sends back to the initiator a participation link; (3) the
initiator communicates the participation link to the other participant users that
contact the poll, look at the restaurant locations on the map, and cast their
votes. Once enough participants express their choices the poll is closed and no
more votes can be submitted. The result of the poll might be inspected through
the original participation link until the initiator deletes the poll from the system.
We assume that DoReMap should comply with a simple SLA that specifies the
maximum response time for each of the application requests, such as creation of
the poll resource and vote.

3.1 Service Composition Model

The DoReMap service composes two atomic RESTful Web services: a restaurant
search service, inspired by Yahoo! Local search engine API !, used to query for
restaurants near a given location, and a voting poll service inspired by the Doodle
REST API?, used to create, update and close polls.

The composition is modeled using the JOpera visual composition language [14],
and is executed on the JOpera Engine version 2.4.93. Figure 3 shows the control
flow view of the JOpera composition model, limited to the creation of the poll
and the handling of the client vote requests. The composition receives the in-
put parameters from the initiator’s form and then invokes the restaurant search
service. Once the search is complete, the composition uses the data about the
restaurants to create both the map that shows their location and the poll by

! http://local.yahoo.com
2 http://www.doodle.com
3 http://www.jopera.org

e ‘A
Initiator gest_aurant
A S N ervice
~
~
~
~
~
~
< _ Notification __
page
@ posr .
Preferences A Wait For N
e Client Votes PUT ._ \
-~ s T \
s e ~. N
// [Max votes ?] [yl \A\ .
/ "
Participants [N Dooc_lle
® /; Service
> Vot -
o e post__ ="
~esce 0 T -
Poll page -
9 _

N
N Refresh Mash Up

Fig. 3. Control flow model of the DoReMap service composition

invoking the voting poll service. When both steps have completed, the page
hosting the poll mashup for the participants is generated and stored at a unique
URI. This URI is then embedded as the participation link into the notification
page that is sent back to the initiator.

Having completed the initialization stage, the composite service enters the
main loop stage to collect the votes of the participants. At each vote, the compo-
sition checks the status of the poll service and updates it accordingly. When the
status of the poll changes, the composition updates the poll page. The composite
service continues executing until the number of votes reaches a threshold given
by the initiator. At this point, the DoReMap service closes the poll, and keeps
its final state published until explicitly deleted by a client.

3.2 System Architecture and Deployment

The architecture of DoReMap includes several components that are deployed
inside four virtual servers interacting through a virtual network. As Figure 4
shows, the JOpera engine is deployed on its own virtual server (JOperaAS) to
separate the logic implementing the composition from the component atomic
services. Both sets of atomic services are designed as standard two-tier Web ser-
vices and are composed of a REST front-end and a database back-end. They
are deployed following different policies: the restaurant lookup service compo-
nents are packaged into a single server, called RestaurantAS, because they are
used only to read data, and because they should optimize the access to the data
during the search; the voting services instead are deployed inside two separated

servers, called respectively DoodleAS and DoodleDB, to separate the data access
logic from the database tier.

!] JOpera Engine

) REST Engine

@ Database

RestaurantAS
~,

JOperaAS
Jo)

Fig. 4. Logical Architecture of the DoReMap Composite Service

Architecting the Web application as a loosely coupled composition of ser-
vices deployed on separate virtual servers increases flexibility when it comes to
deploying the composite service in the cloud. Each virtual server is packaged
as a disk image that can be seamlessly instantiated as virtual machine in the
Cloud. To serve a demanding workload, multiple instances of critical services can
be dynamically created without replicating the entire Web application [21]. For
example, a growing number of concurrent clients might increase the number of
requests at the composition layer. To prevent service saturation, new instances
of JOpera components can be added to serve all requests without violating the
SLA. Similarly, the system can respond to a changing workload mix by adding
new DoodleAS and RestaurantAS server instances, thus scaling horizontally.

3.3 The RESERVOIR Cloud Computing Testbed

We executed the virtualized version of the DoReMap component services on an
infrastructure developed within the FP7 RESERVOIR Project?.

We executed the service on a partition of the RESERVOIR testbed cloud
composed of six Blades IBM LS21 biprocessor dual-core Opteron 2218 at 2.6GHz
with 8GB RAM DDR2 at 667MHz divided into two separated sites of three ma-
chines each, and linked by a dedicated high speed network. One of the machines
was devoted to infrastructure services such as deployment and monitoring, while
the remaining ones were used as raw resource pools, running the Web application
virtual servers.

The RESERVOIR cloud infrastructure is designed to support run time de-
ployment and live migration of virtual machines. This enables virtualized Web
applications to be dynamically reconfigured and scaled to control the service
behavior and performance by acting on the number (and the deployment) of
virtual machines.

Combining this capability to quickly change the number of active virtual
servers with the flexibility of a composite Web application, service providers can

* http:/ /www.reservoir-fp7.eu/

adapt the system to the actual load providing responsive services at reduced
costs, as we show in the next Section.

4 Experimental Validation

In this section, we report the results of our experiments in building Kriging mod-
els to represent the behaviour of the DoReMap virtualized Web application. The
experiments aim to verify whether Kriging models can be used as an approxima-
tion of the behaviour of a realistic composed system, what kind of SLA-related
metrics can be predicted accurately, and how they can be used to choose an opti-
mal system configuration. In more details, the experiments address the following
research questions:

Q1 How accurate is the prediction outside the training set?

Q2 How does the quality of the prediction increase with the number of samples?
Q3 How quickly can the model be computed/updated?

Q4 Can surrogate models be used to choose an optimal system configuration?

To answer Q1 we first build surrogate models using a regular sample set
in the feature space, and then we compare their predictions with respect to
the system response measured at randomly chosen samples. We address Q2 by
measuring the prediction error of models generated with different sparse and
small sample sets with respect to the model computed starting from the full
sample set. We evaluate the cost of generating models (Q3) by benchmarking
our algorithm with increasingly large samples. The speed of the fitting of Kriging
models is a critical aspect to determine whether models can be kept up-to-date
at run time and thus used to drive the adaptation decisions of an autonomic
controller. We use the models to compute the objective function needed for the
controller self-configuration functionality (Q4).

4.1 Experimental Setup

Our experiments aim to construct surrogate models that represent how different
configurations (model input) impact on the system behaviour measured consid-
ering different KPIs (model output). As system configurations we consider the
set of controllable system parameters (i.e., the number of VMs instantiated per
each tier of the Web application) as well as the intensity of the workload (under
our control at staging time, but not controllable in production). We measure the
workload intensity in terms of number of clients that concurrently access the
Web application.

The size of the system configuration space is limited by the available resources
on which VMs can be allocated. In our case we deployed our experimental sys-
tem on 20 physical CPU cores. We allocated the cores as follows: up to 8 cores
to run the JOpera (JO) engines, up to 16 cores to run the Doodle Application
Servers (AS), one core for the Restaurant Application Server (RS) and one core

for the Database Server (DB). The allocation is constrained to at most 20 cores
used simultaneously, and to each core dedicated to a single component to avoid
contention that would complicate the interpretation of the results. The smallest
working configuration thus requires each tier (JO+AS+RS+DB) to be instanti-
ated, for a total of 5 cores, considering that each JOpera engine instance requires
2 cores. The largest configurations that we could test used 4 JOpera instances
(consuming 8 cores) with 10 AS instances, and 16 AS instances with one instance
of the JOpera engine. We used these configurations to determine the saturation
point of the system (where the throughput stops increasing), and we observed
that this occurs with about 100 concurrent clients. Thus, we need to explore 52
possible system configurations for each client workload (from 1 to 100 clients).

N_VOTERS % Thread Pool

N_ACTORS

POLL_CREATE_WAIT

Create
Poll

VOTE_WAIT

Seeee

Fig. 5. Workload Model and Workload Generation Parameters

()
m
A
=0
=
—
—

We sampled the parameter space through a batch of controlled experiments
executed with Weevil [20]. To minimize undesired randomness, we repeated the
experimental runs 5 times per sample, and we measured the output results for a
given sample as the average over the run averages. To avoid measuring transient
behaviours at component start-up or shut-down, each run lasted 5 minutes, and
we discarded the first and last 10 seconds of observation. To stress the system,
we used a synthetic client workload generated as a set of Poisson processes
with different rates for each request type (POLL_CREATE WAIT = 5 s, GET_WAIT
= 2 s, VOTE.WAIT = 1 s, as shown in Figure 5). We controlled the workload
intensity by selecting the number of concurrent client processes (N_ACTORS). Due
to the specific nature of the Web application, in which the clients must follow a
predefined navigation path by following hyperlinks (for instance get request only
after poll creation with post, vote request after getting the available options),
the effect of adding client processes to the workload is not reflected linearly in
the measured system throughput. Rather, an undersized system configuration
would result in a slower workload execution.

After collecting system response averages through reproduceable experimen-
tal scripts, we computed the Kriging model with the octgpr® Octave package.
We set the parameters of the model training to high error tolerance to smoothly

® http:/ /octave.sourceforge.net /octgpr/index.html

approximate the whole configuration space even with few samples, as shown in
the results presented in the next section.

4.2 Results

We sampled and modeled the throughput (Figure 6.a) and the response time
(Figure 6.b) that are the most critical KPIs. In both cases we show a projection
of the 4-dimensional models by setting the workload intensity to 20, 40, and 60
concurrent clients. The x-y axes show the system configuration in terms of the
number of VM instances running the JOpera engine and the Doodle Application
Server. The z axis shows the predicted throughput (in requests/second) or the
response time (seconds).

The model reflects the scalablity of the system, as adding additional resources
decreases the response time and increases the throughput. Also, the model pre-
dicts that for smaller workloads, the best performance (in terms of response time)
is obtained with 7 replicas of the AS tier, while for a larger number of clients,
the highest throughput is achieved with 4 JOpera engines and 10 instances of
the application server.

Another feature of surrogate models concerns their ability to improve their
predictions as more samples are fed into them. To study how the quality of the
prediction increases with the number of samples, we built surrogate models using
regular sampling patterns of 50, 75, 100 samples, and measured the prediction
error with respect to a randomly generated validation set. Table 1 shows that
the quality of the prediction increases with the coverage of the parameter space:
the mean square error, the root mean square error and the average absolute
error significantly decrease as the number of samples used to build the model
increases. The last column of the table shows that the model can be computed
in a small amount of time even when using the full set of samples. Thus, these
models can be used within the closed control loop envisaged in the architecture
of our controller, since they do not introduce a significant delay compared, for
example, to the time required to start or shut down a new VM instance.

Table 1. System throughput: mean square error (MSE), root mean square error
(RMSE), average absolute error (ME) and time needed to build the model (Time)
with respect to sample sets of increasing size

Training set size | MSE RMSE ME Time

50 117.47 10.838 7.4827 0.0241971 s
75 87.273 9.3420 6.1642 0.048146 s
100 71.402 8.4500 5.2788 0.087447 s

4.3 Objective Function

Finding a suitable configuration for a system using a set of models like the
ones presented in the previous section becomes a multi-objective optimization

20 Clients 40 Clients 60 Clients

(a) Throughput

20 Clients 40 Clients 60 Clients

#AS

(b) Response time of vote request

Fig. 6. Surrogate model as a function of the number of JOpera VMs (# JO), Applica-
tion Servers VMs (# AS), and Workload (# Clients) built from a regular 100-samples
mesh

20 Clients 40 Clients 60 Clients

e 2 1
S 5 S
a1l » 1 w1
0.8 0.8 0.8
0.6 0.6 06 F ~Z
0.4 0.4 04
0.2 0.2 02 ¢

0 0

Fig. 7. Aggregated Objective Function (AOF)

problem. Several techniques are available to solve the problem, for instance, by
ranking objectives (minimize SLA violations, then maximize throughput, and
minimize operating costs), or with a single aggregated objective function (AOF),
or with Pareto optimization methods.

To show that the surrogate models can be used as suitable input to analyze
and optimize configurations, we define an objective function that aggregates
them. In this proof of concept, we aggregate the response times for vote re-
quests (R), system throughput (T), and VM operating costs (C) per hour® in
the following form:

AOF(R,T,C)=ax(2s—R)+ T —~vxC (1)

The AOF translates our service level objectives by giving a negative score
for response times above 2 seconds. The second term gives a positive score to
high throughputs. This is compensated by subtracting the operating costs of al-
locating more resources to the system. Parameters «, 3, let the service designer
provide a relative weight for each criterion.

Figure 7 shows the normalized AOF for varying client workloads using values
[= 10,8 = 200,~v = 5000]. We observe that the optimal configuration pre-
dicted by aggregating the surrogated models into this objective function varies
with the number of expected clients respectively to 1 JO and 3 AS for 20 con-
current clients; 2 JO and 5 AS for 40 clients; 3 JO and 6 AS for 60 clients. This
results indicates that our approach to modeling the system configuration and its
performance can lead to a useful objective function that can be embedded into
an autonomic controller.

Additional criteria built from surrogate models can be considered in the
AOF (for instance response times for other requests, predicted percentage of
SLA violations), as well as other more business-related metrics (for example the
difference between the revenue in terms of successfully served requests versus
the cost of violations).

5 Related Work

The study and design of controllers for virtualized Web applications is a lively
research area. We can give a rough classification of different approaches according
to the type of the control technology they adopt (e.g., rule based, control theory)
and the knowledge representation that they use (i.e., white-box vs. black-box).
Rule based approaches do not have an explicit representation of the system:
domain experts embed their knowledge in event-condition-action rules (ECA)
that are evaluated at run time to trigger system adaptation. These controllers
have limited capabilities as their effectiveness is bound to the domain experts’
ability to define rules, and they do not have built-in learning mechanisms [9].

5 As cost indication, we used Amazon EC2 Ireland prices mapping AS, DB, and RS
to Small machines at $0.095 per hour and JO to Large at $0.38 per hour.

Control theoretic approaches apply classic control theory and describe sys-
tem behaviour by means of first principle models or transfer functions. These
approaches rely on mathematically-sound control techniques: well known re-
sults guarantee the stability of the control under the strong hypothesis of linear
system behavior. However, for real systems, model identification (e.g., estimat-
ing the transfer function) becomes a difficult and time consuming activity [22].
Basic control theory approaches do not have learning capabilities. Still, more
advanced controllers, such as self-tuning regulators (STR), can adapt to the ac-
tual system behaviour using different techniques for on-line model parameters
estimation [10].

White box feedback loop approaches for controlling virtualized Web appli-
cations leverage knowledge of system internals to construct analytical represen-
tations in form of Queue Network models: simple product form versions of QN
that can be analytically solved on-line [1]. Very specialized versions of QNs have
been proposed for particular domains, such as multi-tier virtualized Web appli-
cations [4]. Other forms, such as Layered Queue Networks (LQNs), can express
more details on system resource contentions and end-to-end behavior [15,5].
Queue networks give reliable system performance predictions and do not require
any training of the model. However each change of system configuration requires
the entire computation of the model and potentially the re-estimation of all its
parameters [17, 7).

Black box approaches trade model identification and parameter estimation
with feature identification and model training, either in an experimental setting
at staging time or through continuous learning while the system is in production.
For example, artificial neural networks (ANN) are defined in terms of number
of neurons and layers and must be extensively trained before deployment. Once
deployed they may need to be retrained if the quality of their predictions de-
creases [11]. In the cited work, the authors use a ANN to predict if a compos-
ite service violates its SLA while continuously retraining the network through
monitoring data. A different kind of black box model is employed in [6]. These
authors exploits Bayesian Networks (BNs) to predict SLA violations caused by
performance problems in a three-tiered application. In the approach, BNs are
periodically updated from monitoring data, and the controller can query the
model to obtain a probabilistic measure of SLA violation in the near future
given the actual working conditions. In general, approaches based on ANNs and
BNs are more demanding in terms of samples and training time required to build
a reliable model than Kriging [18], hence we deem our solution more appropriate
for autonomic controllers for virtualized Web applications where the parameter
configuration space is very large and continuous learning is required.

6 Conclusion and Future Work

In this paper we propose to apply Kriging surrogate models to approximate the
behavior of a virtualized Web application. This helps systems to automatically
and dynamically control how the application is deployed on a cloud infrastruc-

ture based on its incoming client workload. We discussed how the main features
of Kriging models closely match the requirements of such controllers by providing
complete, precise, and quickly update-able representations of the complex mul-
tidimensional functions tying system configurations with different performance
metrics. We presented our experience in applying our approach to a case study
application deployed on a research cloud testbed showing the viability of the
approach.

Our current research work concentrates on completing the development and
study of a fully functional controller. As a first step, we plan to automate the
experiments by actively using the surrogate model error prediction to drive the
sampling phase. The second step will be catering for runtime monitoring of the
relevant system KPIs and updating the surrogate model accordingly. The final
step will be to define suitable optimization policies to make reconfiguration de-
cisions based on aggregated objective functions such as the one presented in this
paper. In the long term, we plan to automatically leverage additional knowledge
about the system. For instance, we used the model of the service composition to
identify an effective configuration space sampling strategy. That same knowledge
can be combined at runtime with surrogate model prediction adopting different
strategies to provide the autonomic controller with an improved representation
of the system internals.

Acknowledgments

We wish to thank Antonio Carzaniga for the insigtful comments and discussions on
the paper. This work is partially supported by the European Community under the
IST programme of the 7th FP for RTD - project RESERVOIR contract IST-215605,
by the S-Cube NoE and by the Swiss National Science Foundation SOSOA project
(SINERGIA grant nr. CRSI22_127386).

References

1. B. D. Abrahao, V. Almeida, J. M. Almeida, A. Zhang, D. Beyer, and F. Safai.
Self-adaptive SLA-driven capacity management for internet services. In Proc. of
IFIP/IEEE International Symposium on Integrated Network Management, pages
557-568, 2006.

2. V. A. Almeida and D. A. Menascé. Capacity planning: An essential tool for man-
aging web services. IT Professional, 4:33-38, 2002.

3. Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. M. Kienle, M. Litoiu, H. A.
Miiller, M. Pezze, and M. Shaw. Engineering self-adaptive systems through feed-
back loops. In Software Engineering for Self-Adaptive Systems, pages 4870, 2009.

4. 1. Cunha, J. M. Almeida, V. Almeida, and M. Santos. Self-adaptive capacity
management for multi-tier virtualized environments. In Proc. of IFIP/IEEE In-
ternational Symposium on Integrated Network Management, pages 129-138, 2007.

5. A. D’Ambrogio and P. Bocciarelli. A model-driven approach to describe and predict
the performance of composite services. In Proc. of the 6th International Workshop
on Software and Performance, pages 78-89, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. S. Duan and S. Babu. Proactive identification of performance problems. In Proc. of

ACM SIGMOD international conference on Management of data, pages 766—768,
2006.

. C. Ghezzi and G. Tamburrelli. Predicting performance properties for open systems

with KAMI. In Proc. of the International Conference on the Quality of Software
Architectures, pages 70-85, 2009.

. IBM. An Architectural Blueprint for Autonomic Computing. Technical report,

IBM, 2003.

. G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu. Generating adaptation

policies for multi-tier applications in consolidated server environments. In Proc. of
International Conference on Autonomic Computing, pages 23-32, 2008.

M. Karlsson and M. Covell. Dynamic black-box performance model estimation
for self-tuning regulators. In Proc. of the International Conference on Autonomic
Computing, pages 172-182, 2005.

P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and F. Ley-
mann. Runtime prediction of service level agreement violations for composite
services. In Proc. of the Workshop on Non-Functional Properties and SLA Man-
agement in Service-Oriented Computing, 2009.

A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s inside the cloud?
an architectural map of the cloud landscape. In Proc. of the Workshop on Software
Engineering Challenges of Cloud Computing, pages 23-31, 2009.

C. Pautasso. Composing RESTful services with JOpera. In Proc. of the Interna-
tional Conference of Software Composition, volume 5634 of LNCS, pages 142—-159.
Springer, 2009.

C. Pautasso and G. Alonso. The jopera visual composition language. Journal of
Visual Languages and Computing, 16:119-152, 2005.

J. Rolia, G. Casale, D. Krishnamurthy, S. Dawson, and S. Kraft. Predictive mod-
elling of SAP ERP applications: Challenges and solutions. In Proc. of the Interna-
tional Workshop on Run-time mQOdels for Self-managing Systems and Applications,
pages 2—-10, 2009.

B. Sotomayor, K. Keahey, and I. Foster. Overhead matters: A model for virtual
resource management. In Proc. of International Workshop on Virtualization Tech-
nology in Distributed Computing, pages 35—42, 2006.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. Analytic
modeling of multitier internet applications. ACM Transactions on the Web, 1(1):2—
37, 2007.

W. van Beers and J. Kleijnen. Kriging interpolation in simulation: a survey. In
Proc. of conference on Winter simulation, pages 113-121, 2004.

G. G. Wang and S. Shan. Review of metamodeling techniques in support of engi-
neering design optimization. Mechanical Design, 129(4):370-380, 2007.

Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf. Automating experimen-
tation on distributed testbeds. In Proc. of International Conference on Automated
Software Engineering, pages 164-173, 2005.

Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. van Steen. Service-oriented data
denormalization for scalable web applications. In Proc. of the International Con-
ference on World Wide Web, pages 267276, 2008.

X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and K. Shin.
What does control theory bring to systems research? SIGOPS Oper. Syst. Rewv.,
43(1):62-69, 20009.

