JOpera: an Agile Environment for Web Service Composition
with Visual Unit Testing and Refactoring

Cesare Pautasso
Department of Computer Science, Swiss Federal Institute of Technology (ETHZ), ETH Zentrum, 8092 Ziirich, Switzerland

pautasso@inf.ethz.ch

Abstract

Agile methodologies employ light-weight development prac-
tices emphasizing a test-driven approach to the development of
software systems. Modern agile development environments sup-
port this approach by providing tools that automate most of the
work required to effectively deal with change, including unit test-
ing and different forms of refactoring. In this paper we discuss how
to apply such techniques within the JOpera Visual Composition
Language. More precisely, we show how we used the visual lan-
guage to implement a regression testing framework for composi-
tions written in the language itself, and how we introduced support
in the visual environment for refactorings such as renaming, syn-
chronization of service interface changes, and extraction/inlining
across different levels of nesting. This is done in the context of
the Web service composition tools provided with the JOpera for
Eclipse research platform.

1 Introduction

Agile methods focus on embracing change as part of the
ordinary software development practice [1]. Test-driven de-
velopment, refactoring, and immediate feedback are all im-
portant aspects of agile methodologies for which modern
development tools provide more and more support in the
context of traditional (and textual) programming languages.

Dealing with change is also an important issue in the
context of Web service composition, due to the brittleness
of the distributed systems built out of the composition of
remote Web services. Not only compositions are sensi-
tive to the run-time availability of their component services,
but also service interfaces may evolve independently of the
compositions including them. Refactoring plays a major
role to address the latter, as far as a composition can be au-
tomatically synchronized with the changing interface of its
component services.

Furthermore, change may also affect the implementation
of the services: a Web service may be upgraded without
modifying its interface so that its clients continue to work
unaffected. After such change occurs, it is important to be
able to automatically ensure that a composition may con-
tinue to rely on the modified service. Thus, the ability to

automatically determine the impact of a modified service
on a composition that depends on it becomes an important
feature of an agile composition environment.

By proposing to apply agile methodologies to visual Web
service composition, this paper makes the following impor-
tant contributions. First of all, we present several kinds of
visual refactorings that can be automatically applied to a
composition in order to restructure it ensuring that it re-
mains consistent. Second, we describe how to use a vi-
sual composition language to implement a regression test-
ing framework for compositions written in the language it-
self [4]. This is a significant improvement with respect to
many current Web service composition languages, due to
their limited reflection capabilities. These advanced fea-
tures have been implemented in the latest version of the
JOpera visual composition environment, which has been re-
cently ported to the Eclipse platform using the Graphical
Editing Framework. JOpera for Eclipse can be downloaded
from [3].

2 Refactoring a Web service composition

JOpera supports several kinds of refactoring [2]: renam-
ing, extraction and inlining of sub-compositions, as well
as the semi-automatic synchronization of service interface
changes.

2.1 Renaming

Renaming is provided implicitly by the editing tools that
always ensure the consistency of the composition model af-
ter one element has been renamed. Thus, all references to a
renamed element are updated transparently.

As a generalization of this refactoring, the elements of
a composition can also be moved across different loca-
tions (e.g., physical source files or logical packages) with-
out breaking the references to them found in other elements.
This way, the structure of a composition can be reorganized
without having to manually update all of its elements.

ConvertedPrice

Overvien | Procesz: Canvertamaurt | Cantra Fiow | atar o

£ @ 20peraremel [230peraontor [0 pers beson [-Resource

'CurrencyConvert:

|

[eomvertamount

oo

ConvertedPrice

CurrencyConvert)<—|

vrion procees: eyt Cortoion st

CurrencyConvert

]

DefauttCountry="UsA" | [country2|

ConvertedPrice

OriginalPrice

CurrencyConvert)<—| OriginalPrice

Figure 1. Screenshot of JOpera for Eclipse showing the original composition to be inlined (left) into
another one (center) and the result of the refactoring while it is being executed (right)

2.2 Extraction and Inlining

Extraction and Inlining take a prominent role due to the
nesting capabilities of the composition language. Since
compositions of services can be recursively reused as a
service, providing support for easily shifting elements of
a composition along the nesting hierarchy is an important
characteristic of an agile composition environment. JOpera
offers two refactoring wizards, that can be applied to the
currently selected services of a composition. One wiz-
ard collapses (or extracts) the selection into a new sub-
composition; the inverse expands (or inlines) the content
of the currently selected sub-composition. An example is
shown in Figure 1.

Before applying the changes, the refactoring algorithm
used by the wizards checks the selection to validate it
against a set of pre-conditions, since not all possible com-
binations of services can be extracted into a valid sub-
composition. Thus, the developer is warned in advance if
it is not possible to apply the refactoring. First of all, the
control flow between the services is checked. For example,
the services are ranked in the control flow graph according
to their dependencies. With this information, the refactor-
ing algorithm verifies that not only the selected sub-graph is
connected, but also that all paths from the low-ranking ser-
vices to the high-ranking ones lead over a service selected
to be extracted. The data flow graph is also checked to de-
fine the input and output parameters to be associated with
the extracted sub-composition. More precisely, the input
parameters of the new sub-composition reflect the source
parameters of the data flow edges that are inbound into the
selection. Symmetrically, the output parameters are cloned
from the destination parameters which are targeted by out-
going edges.

In addition to preserving the topology of the control and
data flow graph of the refactored composition, this refactor-
ing must also ensure that the visual layout of the extracted
(or inlined) elements is maintained, so that the developer’s
mental map of the flow remains consistent.

2.3 Synchronizing Interface Changes

In the context of Web service composition, the ability to
modify the interface of a service without breaking a com-
position is very important. This situation is quite likely to
happen, especially if Web services are composed by orga-
nizations different than the ones publishing them. Further-
more, even if the services and their compositions are co-
developed within the same organization, a few iterations of
the publish-integrate cycle may be required before the in-
terfaces of the services stabilize. By using this refactoring,
services must not be recomposed from scratch once their
interface is updated.

In JOpera this refactoring takes two forms depending on
whether the service definitions are tightly or loosely cou-
pled with the composition.

In the first case, direct modifications to the signature of
a service stored in JOpera’s internal model will be immedi-
ately reflected in the composition. For example, if a param-
eter is removed from a service description, the correspond-
ing parameter in all of the compositions using the service
will be immediately removed along with its data flow edges.
Likewise, if a new parameter is added to a service descrip-
tion, the new parameter will be immediately be available to
be connected with other ones.

If service interfaces are modified outside of the control
of JOpera, it should still be possible to synchronize such in-
terfaces changes by minimizing the impact on the existing

compositions. To do so, JOpera allows developers to import
the new version of the interface description and to automat-
ically refactor one or more compositions to use the new ver-
sion. The refactoring algorithm determines the commonali-
ties between the two versions of the service by matching the
names and data types of the parameters so that existing data
flow connections can be maintained. Developers greatly ap-
preciate the ability not to have to reconnect the modified
services as after applying this refactoring they only have to
manually connect the parameters that could not be automat-
ically matched.

3 Testing a Web service composition

Testing a composition involves several aspects, for
which an agile environment should provide support using
the appropriate visual tools.

JOpera keeps a clear separation between the model of
a composition and the description of its component ser-
vices. This makes it possible to test each independently.
A composition may be bound to stubs (i.e., testing-version
of the services) so that its execution for testing purposes
will not perturb the ”real” Web services that will eventually
be invoked when the composition is deployed in production
mode. Similarly, as a form of acceptance test, with JOpera,
tools are provided to quickly build a Web service client (i.e.,
a one-service composition) that can be used to interactively
test a service, in order to verify assumptions about the pro-
vided functionality.

In this paper we focus on testing compositions as a
whole, in order to guarantee that despite changes of the im-
plementation of one or more services, the overall behavior
of a composition remains unaffected. To address this prob-
lem, we follow an approach that leverages the persistent ex-
ecution capabilities of JOpera, where snapshots of the com-
plete state of the execution of a composition can be taken,
made persistent and compared with existing snapshots.

The JOpera regression testing framework has been im-
plemented as a visual composition of three different ser-
vices (Figure 2). First, a registry is queried to discover
the available test cases. Following JUnit’s convention,
the LookupProcesses task retrieves all compositions
whose name stems with the word test. These are invoked
using dynamic late binding (Call). Finally a snapshot of
their execution state is taken and compared with the ex-
pected one (SnapshotAndCompare).

If mismatches are detected, the corresponding errors are
reported in the Result parameter and gathered for all tests
in the TestResult parameter. Since such snapshots in-
clude the values of all data flow parameters of the compo-
sition, developers can immediately pinpoint the cause of a
failed test case, as JOpera highlights such parameters in the
data flow graph of the composition.

If no expected snapshot can be found at the given Or-
aclePath repository, a new snapshot using the current
state will be created. This way it becomes easier to define

/]\

[Filter = test.* {OraclePath}

LookupProcesses

|

Processes

SYS.Process

P

Y
{SYS.CaIITarget]4>{TargetlD }

N s~

‘ SnapshotAndCompare ‘

TestResult
i [Resu

Figure 2. Data Flow of the Regression Test-
ing Framework written in the JOpera Visual
Composition Language

OraclePath

the expected state of a composition, as it is automatically
recorded. To ensure its correctness, manual inspection of
the snapshot is required once, after the test has been run
for the first time, while the snapshot can be reused for all
subsequent runs.

We are currently extending this regression testing frame-
work along two directions. 1) It should be possible to
compare only a subset of the entire execution state of a
composition in order to disregard test failures due to non-
deterministic parameter values (e.g., time-dependent data).
2) Developers may also proactively annotate the data flow
of a composition with assertions to be verified during each
execution of a test case. This would provide an additional
level of protection with respect to the one provided by the
state comparison.

Acknowledgements Part of this work is supported by
grants from the Hasler Foundation (DISC Project No.
1820).

References

[1] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2nd edition, November 2004.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley, 1999.

[3] C. Pautasso. JOpera: Process Support for more than Web services.
http://www.jopera.org.

[4] C. Pautasso and G. Alonso. The JOpera Visual Composition Lan-
guage. Journal of Visual Languages and Computing, 16(1-2):119—
152, 2004.

