
An Evaluation of Mashup Tools Based on
Support for Heterogeneous Mashup Components

Saeed Aghaee and Cesare Pautasso

Faculty of Informatics, University of Lugano, Switzerland
first.last@usi.ch

http://www.pautasso.info/

Abstract. Mashups are built by reusing and combining building blocks,
which are commonly referred to as mashup components. These compo-
nents are characterized by a high level of heterogeneity in terms of tech-
nologies, access methods, and the behavior they may exhibit within a
mashup. Abstracting away this heterogeneity is the mission of the so-
called mashup tools aiming at automating or semi-automating mashup
development to serve non-programmers. The challenge is to ensure this
abstraction mechanism does not limit the support for heterogeneous
mashup components. In this paper, we propose a novel evaluation frame-
work that can be applied to assess the degree to which a given mashup
tool addresses this challenge. The evaluation framework can serve as a
benchmark for future improved design of mashup tools with respect to
heterogeneous mashup components support. In order to demonstrate the
applicability of the framework, we also apply it to evaluate some existing
tools. The evaluation results provide a foundation for a useful discussion
on the state-of-the-art mashup tools, with an emphasis on supporting
heterogeneous mashup components.

1 Introduction

Mashups are Web applications built by reusing and combining mashup compo-
nents. These components are not only programming and data abstraction but
also can deliver Web contents that are not syndicated or made accessible via a
public interface [1]. In other words, mashup components can be defined as any
kind of reusable elements on the Web that can contribute to developing com-
posite Web application. Thereby, mashup components often possess very hetero-
geneous characteristics in terms of the access methods through which they are
published (e.g., protocols) as well the way they behave inside a mashup (e.g.,
synchronous and asynchronous interactions).

The heterogeneity of mashup components poses serious challenges on de-
signing mashup tools aiming at lowering the barriers of mashup development
through increasing the level of automation. It is due to the fact that one of the
most important steps in automating mashup development is to abstract away
this heterogeneity to enable seamless composition. Such an abstraction is defined
as a component model that describes the characteristics of mashup components
as well as the way they can be composed together [2].



A component model for mashups should be able to equally take two aspects
into consideration. The first is indeed the level of abstraction that indicates the
amount of technical skill required form a user to interact with the underlying
mashup components. The higher the abstraction level is, the lower barriers are
imposed on the end-users side. The second aspect is the expressive power in
terms of how many and how heterogeneous types of mashup components come
under its umbrella. The increased level of expressive power results in a more
powerful tool. On the other hand, there is a trade-off between obtaining a higher
level of abstraction and having more expressive power that should be considered
while designing a mashup tool. This, however, requires a formal definition of the
expressive power for mashup component models which is currently missing in
literature.

The goal of this paper is thus to propose such a definition in the form of
a framework. The framework can serve as a benchmark for evaluating mashup
tools in this regard. Such an evaluation can then contribute to advancing the
state-of-the-art mashup tools by identifying their weaknesses and strengths. The
framework enables a white-box evaluation process and comprises six dimensions
underlying the level of support for discovery, input/output data types, access
methods, recursion, output types, and runtime behavior. To show how the frame-
work can be utilized, we also apply it to evaluate some existing mashup tools.

The rest of this paper is structured as follows. In the next section we present
our proposed framework. Section 3 is dedicated to evaluate some selected mashup
tools based on the framework. The discussion, including the evaluation summary,
will be given in section 4. An overview of the related work will be provided in
Section 5. We conclude this paper in Section 6.

2 Evaluation Framework

To define the expressive power of a mashup component model, we need to under-
stand what are required to be expressed by a user that concern the component
model. In our proposed framework, these are referred to as dimensions which,
in turn, are refined into a set of characteristics. To extract these dimensions,
we consider a scenario in which a mashup is developed by a user using a tool.
Initially, the user searches for relevant components depending on the goal of the
mashup she intends to develop (discovery dimension). If the required compo-
nents are not found in the library, they need to be newly wrapped by the user
(recursion, access method, and output dimensions). Once the required compo-
nents are ready, the user proceeds with the design process by composing the
components to form a new mashup. During the design-time the user determines
how the components are supposed to exchange data and control with each other
(input/output data type and behavior dimension).

2.1 Discovery

Mashup component discovery is the whole process of retrieving appropriate com-
ponents with regards to the needs of a developer [3]. Hence, a component model



should provide adequate support to facilitate this step. Mashup tools supporting
component discovery usually offer a local library storing reusable components.
In order to support component discovery, a mashup tool can choose among three
approaches outlined below:

– Semantical Discovery. Applying this approach requires a model that
allows to add semantic descriptions of components (e.g., input/output param-
eters and functionality). In this approach, a component is discovered based on
the information contained in its semantic description.

– Syntactic Discovery. In this approach component discovery is guided
based on the component syntax exposed in its model (e.g., input/output data
types).

– Keyword Discovery This approach is based on matching query keywords
with tags and textual descriptions contained within the component model.

2.2 Input/Output Data Type

A mashup component interacts with others through its input and output pa-
rameters. In order to make use of a component inside a tool, the data types of
its parameters should be defined in the tool component model. In general, these
data types can be categorized into two main groups as follows.

– Primitive. This groups is equivalent to standard variable types of a pro-
gramming language (e.g., string, int, boolean, etc.).

– Multipurpose Internet Mail Extensions (MIME). MIME types can
be any standard data formats or media types found on the Web including (but
not limited to) XML, JSON, RSS, and JPG.

2.3 Access Method

This dimension is concerned with the way in which a mashup component is
made accessible for composition inside a mashup. The access method utilized by
various mashup components are highly heterogeneous and can be categorized as
follows.

– Language-dependent. This method forces the use of a specific pro-
gramming, scripting or markup language. For instance, JavaScript APIs, HTML
IFrame widgets, Plain Old Object Java Objects (POJOs), Enterprise Java Beans
(EJB) can be all considered within this category. Though some of these meth-
ods are considered outdated (POJO and EJB), they are still being used within
enterprise. Moreover, Google Maps [4] which is the most popular mashup com-
ponents [5] is accessible via JavaScript APIs.

– Protocol-based. Using standard protocols for accessing a mashup com-
ponent eliminates the requirements for a specific language. Popular protocols for
mashup components are Web services (e.g., RESTful, HTTP, and SOAP) and
Web feeds (e.g., RSS and Atom). According to the ProgrammableWeb [5], the
dominant portion of Web APIs currently constitutes REST Web services.



– Database. Within a mashup, a database can be considered a component
that act as either a read-only or a read/write data source. A database not only
can deliver data and functionality (i.e., query and update features) but also can
become a permanent storage for writing user-related data (e.g., username and
password).

– Non-Standard. There are many Websites that do not officially allow any
reuse of their content or backend functionality. These mostly follow the Web 1.0
paradigm, in which the content is merely assumed to be readable by humans.
Extracting the content and functionality of such websites as mashup components
might still be considered valuable, depending on the goal of the target mashup.
These kind of mashup components are made accessible through two major non-
standard techniques: Web scraping [6], which is the act of converting human-
readable data to machine-readable formats, and Web clipping [7], by which only
a portion of a Webpage is extracted.

2.4 Recursion

A mashup can be incorporated into another mashup as a component. This pro-
cess can be called recursion whose concept is analogous to service composi-
tion [8]. In this sense, mashup components provided by third-party vendors are
similar to atomic services. Likewise, a mashup is a user-defined component cre-
ated through the composition of other mashups and different atomic components
(like a composite service). A component model should take the recursion aspect
into account, as it can reduce the required effort for mashup development through
reuse.

2.5 Output

There are three types of output a mashup component can generate in the final
mashup composition: functional, data, and visual. The development of a mashup
can span one or all of the integration levels including process integration level,
data integration level, and UI integration level, depending on the output types
of its building components [9]. It is also of note that, a single component may
have multiple output types (e.g., a Web Widget).

– Functional. Mashup Components with functional output are delivered as
services that contribute to the business logic layer of a mashup. Such components
are usually orchestrated together in a workflow to deliver a capability [10].

– Data. Components generating data act as external data sources, which
deliver data to a mashup either as continuous data streams with real-time prop-
erties or as snapshots of a remote or local dataset. Most Web data sources are
read-only, but in some cases they may also support updates. Within the mashup,
they are likely to be converted, transformed, filtered, or combined with other
data sources [11].

– Visual. Visual output is generated by UI components [12] or widgets [13].
These components provide some kind of graphical user interaction mechanism



which can be reused at the mashup UI level. The visual part of a component
is incorporated in the mashup UI independently from other UI elements and
component.

2.6 Behavior

At the runtime, the control flow of a mashup determines the sequence of com-
ponent invocation. Nevertheless, the internal execution mechanism of a mashup
component may also affect its parent mashup control flow. This is referred to as
the runtime behavior of a mashup component that can be either task-based or
event-based.

– Task-based. A component with a task-based behavior represents a single
invocation of a local or remote operation, which may provide an output given an
input. It resembles traditional functions or methods, which execute and transmit
responses only when called. In the context of the overall mashup, such compo-
nents are passive (they are executed only when control reaches them).

– Event-based. When a component has an event-based behavior, it is trig-
gered and produces an output only when a specific action (independent from the
composition) has been taken (e.g., user interactions or an asynchronous message
is received from a remote service). An event-based component is, therefore, an
active part of a mashup, which may trigger the execution of a sequence of tasks.

3 Evaluation

In this section, we give an overview of the selected existing mashup tools and
evaluate their corresponding component models based on the framework men-
tioned in Section 2 (Table 1). Considering the fact that our goal is not to evaluate
all existing mashup tools but rather to demonstrate how the framework can be
applied, we selected a sample group of mashup tools (Yahoo Pipes [14], Presto
Cloud [15], Serena Mashup Composer [16], JOpera [17], and Husky [18]) based on
two criteria. The first criterion was to ensure the diversity of End-User Program-
ming techniques [19] utilized by the selected tools. These techniques for the se-
lected tools include visual language (Yahoo Pipes, JOpera, Presto Cloud, Serena
Mashup Composer), domain specific language (Presto Cloud), and spreadsheet-
based programming (Husky). The second one takes into account the availability
of the tools which otherwise can hinder the evaluation process.

In order to make the process of evaluation more concrete as well as to mo-
tivate and exemplify the need for a more powerful component model, we also
benchmark the ability of the selected tools to develop an existing manually de-
veloped mashup called TwBe [20]. TwBe is a mashup developed using PHP and
JavaScript without utilizing any mashup tools. The goal of TwBe is to provide a
stream of YouTube videos as they are retrieved from a user’s Twitter stream. Its
main components include YouTube player1, YouTube data API, Twitter API2,

1 http://code.google.com/apis/youtube/overview.html
2 http://apiwiki.twitter.com/w/page/22554648/FrontPage



Y
a
h
o
o

P
ip

es
e

P
re

st
o

C
lo

u
d

S
er

en
a

M
a
sh

u
p

C
o
m

p
o
se

r

J
O

p
er

a

H
u
sk

y

Discovery
Semantic - - - - -

Syntactic - - - - -
Keyword X X - X -

Data Formats
Primitive X X X X X

MIME

XML,
RSS,

ATOM,
JSON

XML,
RSS,

ATOM

XML,
JSON

XML,
HTML

-

Access Method

Language-
dependent

-
JS,

HTML
JS,

HTML

JS,
HTML,
POJO

-

Protocol-based
REST,

RSS

HTTP,
SOAP,
REST

SOAP,
REST

HTTP,
SOAP,
REST

SOAP

Database - SQL -
SQL,
JDBC

-

Non-standard Scraping - - Scraping -

Recursion X X - X -

Output
Data X X X X X
Functionality X X X X X
Visual - X X X -

Behavior
Task-based X X X X X
Event-based - X - X -

Table 1. Evaluation of Mashup Tools

Twitter OAuth library3, and a local MySQL database (Figure 1). In order to
authenticate with the twitter, TwBe uses the Twitter PHP library for OAuth
(there are also libraries for other languages such as JavaScript). The Twitter
API is then invoked to retrieve tweets of a current user and periodically check
for new ones. After the new tweets are available, those that do not contain link
to a YouTube videos are filtered out. The videos that are going to be played by
YouTube player are fetched from YouTube data API. Finally, the database is
used to cache video tweets belonging to the current user in order to accelerate
further access.

3 https://github.com/abraham/twitteroauth



MySQL

Customized
YouTube Player

List of tweeted
videos (updated

in real-time)

Database

YouTube
Data API

YouTube
Player API

Twitter API

Twitter
OAuth
Library

Fig. 1. TwBe Main Components

3.1 Yahoo Pipes

Yahoo Pipes is a popular tool for creating mashups by integrating data coming
from various sources on the Web. It utilizes visual programming technique to
hide the complexity of mashup development. The visual language is based on
the wiring paradigm in which data sources, blocks, operators, and other tools
are represented as parametrizable boxes which connect to each other. The result
of connecting these boxes forms a pipe through which data flows and will be
eventually visualized or syndicated to the user.

– Discovery. Yahoo Pipes supports component discovery, however, it only
allows the discovery of mashups published in its local library. The discovery
is based on matching keywords in user queries with the tags provided by the
publishers.

– Input/Output Data Format. Primitive data types such as string and
numerical values as well as frequently used MIME types like XML, RSS, Atom,
and JSON are all defined in Yahoo Pipes. These are also the data types negoti-
ated by the TwBe components.

– Access Method. The supported access methods include HTTP and RSS/Atom
feeds. Thereby, YouTube videos and tweets can be easily retrieved as they are
accessible via HTTP protocol. However, Twitter OAuth library and Youtube
Player, which both use language dependent access method, as well as MySQL
database cannot be utilized inside Yahoo Pipes.

– Recursion. Recursion is fully supported by Yahoo pipes. Mashups that
are published in the tool library can be discovered and reused within a new
mashup.



– Output. Components generating data and functionality are only sup-
ported by this tool. As a result it does not allow insertion of UI components
such as YouTube Player.

– Behavior. This tool only supports task-based behavior of components
and therefore, an event-based component cannot trigger a flow of control.

Overall, Yahoo Pipes can not be solely employed to develop TwBe as it does
not support Twitter OAuth library, YouTube Player, and MySQL database.

3.2 Presto Cloud

Presto Cloud includes both a visual language and a powerful XML-based domain
specific language called the Enterprise mashup Markup Language (EMML). It
enables users to switch between the textual (EMML) [21] and visual mode de-
pending upon their interests and background knowledge. Presto Cloud offers
similar features as Yahoo Pipes for creating mashups integrating various data
sources. It also adds support for integrating and designing mashup UI.

– Discovery. Component discovery is enabled and supported via keyword-
oriented search.

– Input/Output Data Format. Components can declare both primitive
and MIME (XML, RSS, Atom) types.

– Access Method. The two supported language-dependent techniques (JavaScript,
and HTML) can be used to create APPs. APPs are similar to widgets that vi-
sualize data and can be recursively created through integration of other ex-
isting APPs. For instance, both the Twitter OAuth JavaScript library and
the YouTube player that build the TwBe mashup can be wrapped as APPs.
Moreover, all the frequently used protocol-based access methods (HTTP, SOAP,
REST) are support by Presto Cloud.

– Recursion. Recursion can happen both in the back-end (data and func-
tionality integration) and the UI (APPs)

– Output. Components with visual output are called APPs. Blocks abstract
components with data and functional output.

– Behavior. Both task-based and event-based behavior of mashup compo-
nents are handled by Presto Cloud. APPs can publish topics (events) to which
other APPs can subscribe.
Presto Cloud can be used to create TwBe.

3.3 Serena Mashup Composer

Serena Mashup Composer is part of the Serena Mashup Suite. It decomposes
mashups into orchestration, which defines the execution order of Web services,
and application, which specifies the front-end of the mashup.

– Discovery.Mashup Central is a library containing templates and mashups
shared by other users. However, it does not appear to support discovery of
mashup components.

– Input/Output Data Format. Other than primitive data types, compo-
nents can negotiate JSON and XML.



– Access Method. It supports protocol-based (REST, SOAP) and language-
dependent (JavaScript, HTML) access methods. In the latter case, JavaScript
and HTML is used to embed widgets. This can also be used to incorporate the
Twitter JavaScript library for OAuth.

This tool does not support the use of databases, and therefore can not be
used to create TwBe.

3.4 JOpera

JOpera is a rapid visual service composition tool. Service composition using
JOpera is based on drawing a control flow graph that determines the sequence
of service execution and one or more data flow graphs that indicate the flow
of data between the services. JOpera allows abstraction of services of different
types by concealing their internal mechanism (i.e., access method, input/output
data types, etc.) behind a unified interface [22].

– Discovery. JOpera library stores both atomic and composite services and
allows their discovery based on keyword-oriented search.

– Input/Output Data Format. JOpera data flow parameters can contain
any data type.

– Access Method. It supports language-dependent (JavaScript, POJO,
and HTML), protocol-based (HTTP, SOAP, REST), database (SQL, JDBC),
and non-standard access methods (Web scraping) which cover all the access
methods utilized by the TwBe components.

– Recursion. Recursion is supported by JOpera through the subprocess
construct.

– Output. It handles all the three possible output of a mashup component
(functional, data, visual).

– Behavior. JOpera not only supports task-based behavior of components
but also allows handling exception events. Other types of event-based behavior
such as data stream updates and UI events are not supported.

A very similar version of TwBe (in terms of UI), thanks to the high expressive
power of JOpera in UI design (i.e., using Echo adapter that outputs DHTML
code to browser), can be developed using JOpera.

3.5 Husky

Husky is a spreadsheet-based tool for service composition. Each cell of a Husky
spreadsheet encapsulates a service. The sequence of service invocation is defined
by placing service invocation events into adjacent cells.

– Input/Output Data Format. It only supports primitive data types.
– Access Method. The only supported access method is WSDL/SOAP

Web services, which is not relevant in the case of TwBe example.
– Output. Since it only supports Web services, the only output types are

functional and data.
This tool can not make any contribution to developing TwBe (none of TwBe

components use SOAP Web service as their method of access).



4 Discussion

As the evaluation suggests, many of the selected tools do not provide adequate
support for language-dependent mashup components. These are mostly exem-
plified by widgets accessible through JavaScript APIs (e.g., Google Maps). Tools
like JOpera, Presto Cloud, and Serena Mashup Composer offer a JavaScript and
HTML container to wrap such widgets. However, language-dependent compo-
nents are not limited to JavaScript APIs and HTML, they may also be PHP
libraries (for instance Twitter PHP library for OAuth).

A common limitation among the tools was the lack of support for event-based
behavior of mashup components, which is usually the case in widgets. Even
though JOpera and Serena Mashup Composer provides support for embedding
widgets, they are unable to handle events fired by them through user interactions.
The only tool of our selection that can manage UI events is indeed Presto Cloud.
Furthermore, event-based behavior does not merely involve widgets, but also
mashup components which generate data output can be used to subscribe to
a source of streaming data. This also results in firing an event that should be
handled by the mashup, e.g., when a new tweet containing a link to a YouTube
video appears.

Interestingly, none of the tools thoroughly support component discovery. As
a matter of fact, component discovery is one of the most important steps in the
mashup development process. The majority of the selected tools (Yahoo Pipes,
Presto Cloud, Serena Mashup Composer), except for JOpera, do not include
atomic components in their library but only mashups that published by users.
Moreover, the only discovery technique utilized by all of these tools was based on
keyword-oriented search. Even though semantic discovery is not yet matured, its
state-of-the-art [23] not only can contribute to streamlining mashup discovery
but also can enable a higher degree of automation in mashup development.

Regarding the output types, the majority of the tools do not handle com-
ponents maintaining their own UIs (i.e., visual output). Moreover, a tool that
supports components with visual output may not necessarily support UI inte-
gration. JOpera is an example of this case, where the majority of UI components
and widgets are supported but the required means of carrying on UI integration
such as handling the communication of UI events [12] are not supported.

The level of support for recursion and input/output data types were satis-
factory. In the latter case, however, the only supported MIME types were XML,
HTML, RSS, and JSON. Though these are the most common media types for
mashup components, they still need to broaden their support range to also cover
less frequently used types such as YAML [24].

In general, supporting all types of mashup components is a challenging task.
It gets even more challenging to keep the usability of a tool in a satisfactory
level while increasing the expressive power of its component model. This can
also be generalized to other aspects of mashup development such as composition
and evolution. This is an important tradeoff that confronts the design of mashup
tools, and thus needs to be addressed in future research.



5 Related Work

Previous efforts on proposing evaluation frameworks for mashup tools have been
conducted along two directions. The first concerns the usability of mashup tools.
For instance, the evaluation frameworks presented in [25,26] can both be con-
sidered towards this direction.

The second direction, within which this paper is to be considered, focuses on
evaluating the expressive power of mashup tools. Previous evaluation frameworks
target various aspects of mashup development that need to be expressed to end-
users. For instance, [27] presents a benchmark for assessing mashup tools with
respect to their data integration capabilities. The framework presented in [28] is
also another example that classifies mashup tools and evaluates their expressive
power concerning their support for process integration. We consider this paper
as a complement to all the previous work done in this direction, the expressive
power of component modeling for mashups.

6 Conclusion

The purpose of mashup tools is to lower the barriers of mashup development to
the degree that even non-programmers can develop mashups. Even though the
usability and ease-of-use are important factors for mashup tools, these should
not compromise the expressive power offered by such tools and vise versa. One
aspect of mashup development that determines this expressive power is the level
of support for composing heterogeneous mashups components. In this paper,
we have presented an evaluation framework that measures mashup tools based
on to which extent they deal with the heterogeneity and diversity of mashup
components. We defined the framework in terms of multiple dimensions and
used it as the basis for undertaking an evaluation of a small group of mashup
tools.

We believe the proposed evaluation framework can provide a roadmap to-
wards an improved design for the next generation of mashup tools. To do so,
heterogeneity can be addressed within a component model by means of adap-
tation and standardization. Adaptation is feasible in the short term and entails
transforming heterogeneous mashup components into a common existing tech-
nology so that they conform with each other [2]. This method is harnessed by
Mashape [29] by providing a programmable platform for converting various ser-
vices and APIs into REST Web services. Standardization will require a more
concerted effort and can provide a better solution in the long term, assuming
that the resulting standard for mashup components become widely adopted.
The Open Mashup Alliance (OMP) is now actively working on standardizing
mashups, for example with EMML.

References

1. Ogrinz, M.: Mashup Patterns: Designs and Examples for the Modern Enterprise.
Addison-Wesley (2009)



2. Assmann, U.: Invasive Software Composition. Springer (2003)
3. Zhao, Q., Huang, G., Huang, J., Liu, X., Mei, H.: A web-based mashup environment

for on-the-fly service composition. In: Proc. of SOSE 2008. (2008)
4. Google Maps API. (Available at http://code.google.com/apis/maps/

documentation/javascript/)
5. ProgrammableWeb. (Available at http://www.programmableweb.com/)
6. Schrenk, M.: Webbots, Spiders, and Screen Scrapers. No Starch Press (2007)
7. Smith, I.: Doing web clippings in under ten minutes. Technical report, Intranet

Journal (2001)
8. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE

Internet Computing 8 (2004) 51–59
9. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language

for web apis and services mashups. In: Proc. of ICSOC 2007. (2007)
10. Vrieze, P.d., Xu, L., Bouguettaya, A., Yang, J., Chen, J.: Process-oriented enter-

prise mashups. In: Proc. of GPC 2009. (2009)
11. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An online platform for web apis

and service mashups. IEEE Internet Computing 12 (2008) 32–43
12. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-

derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11 (2007) 59–66

13. Hoyer, V., Fischer, M.: Market overview of enterprise mashup tools. In: Proc. of
ICSOC 2008. (2008)

14. Yahoo Pipes. (Available at http://pipes.yahoo.com/pipes/)
15. Presto Cloud. (Available at http://www.jackbe.com/enterprise-mashup/)
16. Serena Mashup Composer. (Available at http://www2.serena.com/pages/

mashups/campaigns/composer-download/index.html)
17. JOpera. (Available at http://www.jopera.org/)
18. Husky. (Available at http://www.husky.fer.hr/)
19. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End-User Pro-

gramming. In: Proc. of CHI 2006. (2006)
20. TwBe. (Available at http://arc.inf.unisi.ch/twbe/twitter/)
21. EMML. (Available at http://www.openmashup.org/)
22. Pautasso, C., Alonso, G.: From web service composition to megaprogramming. In:

Technologies for E-Services. Springer Berlin / Heidelberg (2005)
23. Mohebbi, K., Ibrahim, S., Khezrian, M., Munusamy, K., Tabatabaei, S.G.H.: A

comparative evaluation of semantic web service discovery approaches. In: Proc. of
iiWAS 2010. (2010)

24. Yaml. (Available at http://www.yaml.org/)
25. Grammel, L., Storey, M.A.: An End User Perspective on Mashup Makers. Technical

report, University of Victoria (2008)
26. Grammel, L., Storey, M.A.: A survey of mashup development environments. In:

The Smart Internet. Springer Berlin / Heidelberg (2010)
27. Di Lorenzo, G., Hacid, H., Paik, H.y., Benatallah, B.: Data integration in mashups.

SIGMOD Rec. 38 (2009) 59–66
28. Daniel, F., Koschmider, A., Nestler, T., Roy, M., Namoun, A.: Toward process

mashups: key ingredients and open research challenges. In: Proc. of Mashups’10.
(2010)

29. Mashape. (Available at http://www.mashape.com/)


