Initializing a National Grid Infrastructure —
Lessons Learned from the Swiss National Grid Association Seed Project

Nabil Abdennadher®, Peter Engelb, Derek Feichtinger®, Dean Flanders?, Placi Flury®, Sigve
Haug?, Pascal Jermini/, Sergio Maffioletti?, Cesare Pautasso”, Heinz Stockinger’, Wibke
Sudholt’, Michela Thiemard/, Nadya Williams?~, Christoph Witzig®
“Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), ®University of Bern (UniBE), Paul
Scherrer Institute (PSI), “Friedrich Miescher Institute (FMI), <SWITCH, f Ecole Polytechnique
Fédérale de Lausanne (EPFL), 9Swiss National Supercomputing Centre (CSCS), " University of
Lugano (USI), ‘Swiss Institute of Bioinformatics (SIB), ? University of Zurich (UZH), Switzerland
seed-wg @swing-grid.ch

Abstract

In addition to multi-national Grid infrastructures, sev-
eral countries operate their own national Grid infrastruc-
tures to support science and industry within national bor-
ders. These infrastructures have the benefit of better sat-
isfying the needs of local, regional and national user com-
munities. Although Switzerland has strong research groups
in several fields of distributed computing, only recently a
national Grid effort was kick-started to integrate a truly
heterogeneous set of resource providers, middleware pools,
and users. In the following article we discuss our efforts
to start Grid activities at a national scale to combine sev-
eral scientific communities and geographical domains. We
make a strong case for the need of standards that have to be
built on top of existing software systems in order to provide
support for a heterogeneous Grid infrastructure.

1. Introduction

Grid computing projects and infrastructures are typi-
cally organized in multi-national ways, building on re-
sources offered by several organizations and countries. For
instance, the EGEE [1] and PRAGMA [2] projects with
their world-wide infrastructures comprise partners in sev-
eral continents. International Grid projects are typically
characterized by rather homogeneous Grid middleware sys-
tems such as glLite, UNICORE, Globus, or ARC, which
makes it rather easy to use the provided Grid infrastructures
in a homogeneous way.

There also exist many national Grid efforts world-wide,

such as the Open Science Grid in the USA, ChinaGrid,
Narengi in Japan, the e-Science program in the UK, D-Grid
in Germany, Austrian Grid, and others. These projects usu-
ally share the objective to provide a Grid infrastructure at
a national scale to support a variety of scientific user com-
munities. To fulfill their mandates, most of these projects
receive funding from their local governments.

In Europe, the European Grid Initiative (EGI) [3] has the
goal to provide a Europe-wide, sustainable Grid infrastruc-
ture that goes beyond the scope of traditionally funded Grid
projects. This initiative foresees that each member coun-
try has only one Grid contact point organized as a National
Grid Initiative (NGI), with the mandate to represent the sci-
entific and Grid community of a country. With this, EGI
follows the model of the national research networks such
as SWITCH, DEN, BELNET, etc., which provide the ba-
sic networking technology to academic and governmental
institutions on top of which software services should be de-
ployed. Several of the NGIs exist already (e.g., Austrian
Grid, D-Grid, Grid-Ireland, Israeli Academic Grid, MD-
Grid in Moldavia, Montenegro Grid Initiative, NorGrid in
Norway, PL-Grid in Poland, etc.), several others are cur-
rently being created. In Switzerland no such organization
existed. This led to the recent foundation of the Swiss Na-
tional Grid Association (SwiNG) [4], to join EGI as an NGI.

National Grid efforts typically support local or regional
user communities and provide local service contact points.
They often operate in a way similar to international projects
by focusing on single middleware systems. This is possible
if the national initiatives are well aligned with the goals of
multi-national projects. Switzerland has started to create
such a national effort rather late. This means that several



research groups and institutions are already part of different
Grid projects that use a wide variety of different middleware
systems. Due to this heterogeneity it is rather difficult to
combine existing systems and knowledge communities in a
seamless way.

To address the specific technical and operational issues
of heterogeneous Grid middleware systems and applications
from different scientific domains such as physics, chem-
istry, biology, etc., a so-called “Seed Project” was initiated
to bootstrap the activities of the SwiNG association. On
one hand, the Seed Project kick-started some of the techni-
cal activities in the organization. On the other hand, initial
knowledge communities and networks have been created to
identify middleware and applications that can be deployed
on a Grid. Several middleware pools and scientific appli-
cations have been identified, established, and enhanced to
allow for national-scale Grid activities. Due to this diver-
sity, several obstacles have been faced which provide strong
arguments in favor of standardization for Grid middleware
and applications.

In the following article we will discuss our experience
from taking the initial technical steps towards such a na-
tional Grid infrastructure. Thereby, Grid computing is not
only about tackling technical issues [5], but also organiza-
tional ones. These become more important when a Grid
needs to be built on top of existing infrastructures and
projects.

2. Bootstrapping a Grid at National Scale

In May 2007, SwiNG has been created with the aim to
(1) foster Swiss science, education, and industry through
resource sharing, (2) provide a sustainable Grid infrastruc-
ture, (3) establish an interdisciplinary collaboration plat-
form, and (4) represent the interests of the national Grid
community. These goals are well in line with the common
ideas of e-science and Grid computing.

The Swiss academic research landscape is organized in
two federal technical universities, cantonal (i.e., state) uni-
versities, universities of applied sciences, as well as other
research organizations that are partly funded by the gov-
ernment. Network connectivity is provided by the Swiss
research network SWITCH that connects and supports all
academic institutions. Similar to the research network, a
Grid infrastructure is foreseen to provide access to all these
institutions.

Several of the organizations are already involved in na-
tional or international Grid projects such as EGEE, Core-
Grid, Diligent, EMBRACE, Chemomentum, PRAGMA,
SEPAC, etc., which all have their specific project goals and
research agendas. Although these projects support different
user communities, there is not yet a common infrastructure
nor portable applications that can be run on all of the exist-

ing infrastructures. The first example of a Swiss-wide Grid
activity is the SwissBioGrid (SBG) [6], which was mainly
limited to the life sciences. It provides Grid infrastructures
based on the Univa UD Grid MP and the NorduGrid ARC
middleware systems for protein-ligand docking and bioin-
formatics applications. While SBG represents a predeces-
sor of SWiNG, more applications and more institutions need
to cooperate in order to build a full-scale national infras-
tructure. Note that CERN, the European Organization for
Nuclear Research, although it is partly located on Swiss ter-
ritory and provides a Grid infrastructure, is an international
institution and therefore not member of SWiNG.

To bootstrap some of these activities, we have created
the Seed Project in November 2006, with the aim to find
partners with Grid interests, as well as to identify some key
applications and middleware systems. The goal was to ini-
tialize, test, and demonstrate the SwiNG collaboration by
means of a common project. This effort did not have di-
rect funding, and was realized through time and computer
resource contributions by the involved partners. This means
that we had to look for realizable tasks with an integrative
potential. We started by submitting a survey to the Swiss
Grid community, asking what resources (people, projects,
hardware, middleware, applications, ideas) are available
and of strong interest. The result is a unique knowledge
base that provides an overview of the hardware, software,
and Grid expertise in Switzerland. It turned out that — as
expected from the involvement of Swiss partners in many
different external Grid projects — middleware and appli-
cations in Switzerland are relatively diverse. We identi-
fied a few prominent Grid middleware tools and exemplary
scientific applications, and used them for creating a cross-
product (matrix) infrastructure. In this approach, each ap-
plication from a selected set of applications is “gridified” or
enabled to run using each middleware tool from a selected
set of Grid middleware products.

By choosing already known middleware and address-
ing early adopters on the application side, we avoided the
“chicken-and-egg” dilemma in bootstrapping a Grid infras-
tructure: while the scientists are only attracted by a large
Grid infrastructure that is worth the extra effort for port-
ing their applications, the resource providers Grid-enable
and scale their resources only if there is an explicit demand.
In the next sections, we will discuss the selection of the
Seed Project Grid infrastructure, and provide details about
the scientific applications.

3. Heterogeneous Infrastructure

The main approach of the Seed Project is to build on
existing infrastructures and extend them where necessary,
rather than using a single, homogeneous Grid platform.
This approach is different from other national Grid efforts



that have started earlier, but provides a typical use case and
a strong argument in favor of Grid standardization on the
protocol and interface level instead of on the implementa-
tion level. We believe that our experience is not unique, but
representative of many other nation-wide Grid initiatives.

We selected a few representative Grid middleware tools
for the Seed Project. Each tool initially requires the build-
ing of its own resource pool. The final idea is of course to
allow interoperability among all heterogeneous pools. We
agreed on the following selection criteria: each middleware
product should already be deployed at as many as possible
involved partner sites, has to be accompanied by sufficient
expertise and manpower, and must be supported within ex-
isting larger Grid efforts. In addition, the selected Grid mid-
dleware should not have too complex requirements, must
be diverse, and needs to provide a sufficient set of capa-
bilities. The initial focus is on compute-intensive, not on
data-intensive applications.

According to these criteria, we decided to build middle-
ware pools based on gLite, the middleware of the EGEE
project, ARC, the middleware previously used in the SBG
project, XtremWeb-CH, a desktop Grid platform developed
at HES-SO, and Condor, the middleware used for the EPFL
Campus Grid. In this way we support some of the most
popular Grid flavors, given that gLite and ARC build on the
Globus Toolkit. The details of each middleware infrastruc-
ture, and Grid security and interoperability issues spanning
across all pools will be discussed in the following sections.

3.1. Grid Security and Certificates

Grid security and certificate-based authentication are
among the most commonly agreed standards in the Grid
community and are supported by many middleware imple-
mentations. This has also been proven true in our experi-
ence. Therefore, a virtual organization has been created that
allows for X.509-based user certificates from several certi-
fication authorities, including a Swiss national one operated
by the research network.

In addition to standard X.509 user certificates, we sup-
port ad-hoc generated short lived certificates from a Short
Lived Credential Service (SLCS) [7]. A user can obtain
these certificates by password authentication to the Authen-
tication and Authorization Infrastructure (AAI) [8] system.
The AALI service delegates the authentication process back
to the home institution of a user. This considerably lowers
the entry barrier for new users since experience shows that
obtaining and managing X.509 certificates is cumbersome
for the average user and often a source of problems. Ad-
ditionally, the identity management becomes simpler since
the central CA is not required to keep a separate master user
database. Apart from the need for certificate renewals for
long-running jobs, SLCS thus provides an attractive service

for a nation-wide Grid infrastructure. glLite, ARC, and Con-
dor support and have been successfully tested with short
lived X.509 certificates. XtremWeb-CH relies on a central
user database instead of certificates, requiring an interface
solution.

3.2. gLite Pool

Overview: glite [9] is the middleware developed under
the umbrella of the EGEE project [1]. It has a large user
base and is deployed on many resources since it is the mid-
dleware of the LHC Computing Grid (LCG) project [10],
the world’s largest Grid infrastructure providing the compu-
tational power for analyzing data from CERN’s LHC (Large
Hadron Collider) experiments.

glite is based on a number of components from
Globus [11], among them the GSI. gLite adds support for
virtual organizations (VOs) and extends data management
functionalities. Among the principal components of a gLite
site are the computing element (CE) and the storage element
(SE). The CE is a gateway between the external Grid and the
site’s compute nodes (termed worker nodes) by interfacing
to a local batch scheduling system. The SE offers a number
of data transfer-oriented services with standard interfaces
and gives access to the site’s disk and tape storage. All re-
sources announce their availability and capabilities through
an information system which is used by the Grid resource
management to render decisions on where to place jobs.

A major challenge in CERN’s high energy physics
projects is dealing with petabytes of distributed data. gLite
offers many Data Grid components such as file catalogs and
Grid transfer protocol-enabled storage management sys-
tems. gLite also offers a fairly advanced authentication and
authorization model based on VOs, where VO users can be
further organized into hierarchical subgroups. Since this has
to be supported by all resources, a large part of the develop-
ment effort in glite is spent on getting the resource services
into compliance. This rich functionality and the involve-
ment of many vendors result in complex package inter-
dependencies and a substantial configuration effort needed
for setting up gLite resources. This is also the reason for
the middleware being officially supported only on the Sci-
entific Linux platform. Intensive usage within LCG cou-
pled with large scale data challenges has led to the aban-
donment and rewriting of several components. Functional-
ity late in coming often had to be implemented by the LCG
groups, thereby adding to the large number of gLite com-
ponents, and resulting in multiple competing implementa-
tions for some packages. However, as the start of the LHC
experiment is drawing nearer, an increased amount of con-
solidation is observed. In summary, successfully running
gLite services requires substantial manpower, and is quite
complex and intrusive for a computing center.



Deployment: In Switzerland, glite and its predeces-
sors have been in production use since 2002 by a collab-
oration of the Swiss high energy physics groups and the na-
tional supercomputing center CSCS. In addition, the mid-
dleware was used by the DILIGENT project. Within the
SwiNG Seed Project, a small dedicated test environment
was set up among the resource providers that already ran
gLite pools. SWITCH provided a new CA for issuing cre-
dentials to users and integrated it with their SLCS. This al-
lowed tests to be done without impacting the existing pro-
duction infrastructure.

Experience: Installing a gLite user interface (UI)
needed for submitting jobs is relatively straightforward, but
a large effort is required from the resource providers for in-
stalling and running the glite service components. Even
though gLite is the heaviest in terms of required manpower,
the fact that there are already substantial resources running
it and its data management capabilities, make it a candidate
for a national Grid infrastructure.

3.3. ARC Pool

Overview: The Advanced Resource Connector
(ARC) [12] is the middleware developed by the NorduGrid
project of the nordic countries in Europe. Similar to gLite,
it is based on Globus [11]. ARC provides fundamental Grid
services, such as information services, resource discovery,
monitoring and management, as well as job submission,
management and brokering. Authentication and authoriza-
tion are based on GSI and are enriched with the support for
VOMS certificates. In order to better cope with the ARC ar-
chitecture, the GridFTP-based file transfer service, and ac-
cess to the computing resources have been rewritten.

The aggregation model of the computing resources is
the cluster, so the ARC resource pool is seen as a collec-
tion of federated clusters, each with its own local comput-
ing element (CE). ARC has the notion of a storage element
(SE) for a Grid-wide persistent data repository. Currently,
it is compliant with the SRM interface, but it only provides
GridFTP-based file transfer. Unlike gLite, it does not have
the notion of a worker node with additional installation re-
quirements. ARC supports up to 22 different Unix distribu-
tions for client, SEs and CEs, as well as backends for sev-
eral Local Resource Management Systems (LRMS). Appli-
cations can each be set up in a dedicated runtime environ-
ment (RE). This results in a non-intrusive solution for an
easy integration of existing computer resources.

However, with the GridFTP SE interface ARC provides
only a limited support for complex data management. The
file catalog service is based on Globus RLS, and at the mo-
ment there is no notion of data proximity to instruct the re-
source broker to direct requests towards data. If not config-
ured properly, ARC may lead to an inefficient use of the un-

derlying computing resources, as one of the system require-
ments is that all nodes share a common filesystem. This has
been observed already in several projects to restrict perfor-
mance and stability. The information service is limited and
does not scale on large distributions.

Deployment: The SBG project preceding SwiNG used
ARC to aggregate resources from several sites in Switzer-
land. CERN’s LHC project provides support for the ARC
middleware mainly for Tier 2 and 3 sites. ARC has been
used in the Seed Project as several partner sites (CSCS,
SIB, UZH) already had it enabled on their resources. Using
the SLCS certificates and leveraging the SBG infrastructure
provided a simple ARC pool build: the centralized informa-
tion service used for the SBG project has been extended to
accept registration from seed sites, and the required appli-
cations have been enabled by creating additional REs.

Experience: ARC can be seen as the most successful
middleware pool within the Seed Project. Nevertheless,
running, controlling, and managing an ARC pool requires
a coordinated effort at all involved partners sites, as stabil-
ity is still an issue. Even if the services provided by ARC
are limited and rather simple to configure, all sites need to
agree on a common configuration schema to allow resource
sharing. For the scientific applications, each site must cope
with the RE specifications, as this cannot be made auto-
matic. Users need to be aware of the RE specifications for
creating their job descriptions. Finally, errors coming from
both users and resources have to be tracked cooperatively,
as the accounting and logging services are still limited.

3.4. XtremWeb-CH Pool

Overview: XtremWeb-CH (XWCH) [13] is a volunteer
computing middleware developed at HES-SO that makes
it easy to deploy and execute parallel and distributed ap-
plications on a public-resource computing infrastructure.
XWCH can support diverse HPC applications, including
those with large storage or communication requirements.
Universities, research centers, and private companies can
create their own XWCH platforms while anonymous PC
owners can participate in these platforms. They can specify
how and when their resources could be used.

The objective of XWCH is to develop a real high per-
formance P2P platform with a distributed scheduling and
communication system. The main idea is to build a com-
pletely symmetric model where nodes can be providers and
consumers at the same time. XWCH can execute distributed
and parallel applications where tasks can/should communi-
cate. Communications between compute nodes (workers)
can take place directly or via warehouses if direct commu-
nication is not possible. Workers are not dedicated to com-
puting. They are also often behind network firewalls that do
not allow incoming network connections. This requires the



use of a pull model in which workers periodically request
work from a central coordinator, rather than the push model
used by certain Grid software.

Deployment: Testing within the Seed Project has been
carried out on a set of computers belonging to two SwiNG
members (two sites at HES-SO, one at UZH). The PHYLIP
application has been previously ported to XWCH, and the
porting of GAMESS has been started as part of the project.

Experience: XWCH workers are quite easy to install
and run on given compute nodes. However, there are still a
few issues that need improvement: security is relatively lim-
ited, and user management based on a central user database,
not on GSI and VOs, as in most other Grid middleware con-
sidered here. The porting of applications needs some effort.
Additionally, no special data management features are pro-
vided up to now.

3.5. Condor Pool

Overview: Condor [14] is a Grid middleware that is typ-
ically deployed within the boundaries of a single institu-
tion, even though it can be used across multiple institutions
or sites. Condor is a high throughput computing environ-
ment which uses idle cycles of the existing computing re-
sources for computational tasks. By deploying Condor on
desktop machines, there is usually no guarantee that a given
resource will always be available. This makes a Condor
pool a very volatile environment, where computational re-
sources appear and disappear at random. The typical usage
of such a Condor pool includes running single-threaded ap-
plications in parameter scan mode.

Condor supports several authentication and authoriza-
tion mechanisms such as GSI and Kerberos. Currently, it
does not support VO-based certificates. Condor does not
have a built-in data management system, and relies on a
shared file system (NFS or AFS), or on its built-in file trans-
fer mechanism to send input/output data to a compute node.
Condor is also able to communicate with Globus sites, via
Condor-G, which is the job management part of Condor. On
the other hand, from the view of Globus and related Grid
middleware tools such as ARC, Condor can be seen as just
another LRMS, and corresponding interfaces are available.

Deployment: Testing for the Seed Project has been done
on a subset of computing elements of an existing Condor
pool. At the same time this pool is used as an institu-
tional production Grid. A Condor pool has been deployed at
EPFL, by utilizing non-dedicated computer resources: most
of the compute nodes are standard workstations, used by
students or staff during the day, and used by Condor during
nights and weekends, when the workstations are idle. In the
EPFL configuration all job submissions occur from a sin-
gle submit server in order to centralize accounting data and
to provide a uniform environment to the users. This also

simplifies the debugging of problematic job submissions by
having all user data directly on one server.

Experience: An issue with the Condor configuration at
EPFL is that the selected scientific applications were not
available on the compute nodes. It was not possible to
install the applications on the pool nodes due to the local
resource management policy that disallowed external soft-
ware installation. This means that the application user has
to rely on Condor’s built-in transfer protocol to transport the
application binaries along with any input data to the com-
pute node.

3.6. Interoperability

Due to the fact that most middleware systems implement
their own mechanisms for resource and data management,
information representation, or job submission, they can not
interoperate with each other, despite existing OGF stan-
dards. To overcome these interoperability issues, there are
two general solutions: (1) A meta-middleware could be de-
veloped and installed on all middleware pools. Users would
submit their jobs to the meta-middleware system instead of
submitting to individual pools. This approach represents
quite a complex endeavor, in particular since not all dis-
cussed middleware tools expose the same interfaces or ad-
here to the same standards. This solution is out of scope for
the short-term Seed Project. (2) One could enable interop-
erability by one-to-one wrappers. For example, some mid-
dleware systems can operate as bridges, by transforming
job submission, data transfer, and other information from
one format to another, by interfacing with LRMSs, and by
providing information about the resource status in a unified
way. Users can then use a single entry point for job sub-
mission, without having to learn multiple job description
languages.

Following the second approach, the Condor pool de-
scribed previously has been integrated into the Seed Project
ARC pool. The ARC middleware interfaces well with Con-
dor, providing a conversion of the submit files from ARC
format to Condor format and reporting to the user the cur-
rent state of the submitted jobs. There is no need to provide
accounts on the local submission servers for users coming
from outside of the institution since this aspect is managed
by ARC and SLCS certificates. In order to separate local
jobs (from EPFL users) and external jobs (from the Seed
Project) in the scheduling queues, a gateway machine has
been installed. It hosts the ARC middleware in charge of
converting ARC jobs into Condor jobs, and converting in-
formation back into ARC format when the job is done. A set
of Cones application binaries (see below) has been prepared
for all platforms controlled by Condor. The ARC backend
for Condor has been modified in order to “append” the re-
quired binaries to the Condor job on the gateway once the



destination queue has been selected. This step is completely
transparent for the user, making the Condor pool behave as
if applications are installed on the compute elements.

Note that our work on interoperability is just a basic start.
Grid standards such as the Job Submission Description Lan-
guage (JSDL) developed by OGF have to be supported by
all middleware products in order to avoid meta-middleware
systems or middleware bridges. An even more important
aspect is the need for agreed job submission protocols to
interact with middleware systems and computing and stor-
age resources. Therefore, our current middleware pools can
be considered as “islands”, but we expect to see improve-
ments as the middleware progresses and new standards are
adopted.

4. Scientific Applications

One of the main objectives of the SWiNG Seed Project
was to initiate collaboration among as wide of a community
as possible. Thus, we went beyond previous approaches in
Switzerland such as SBG [6], and selected several scientific
applications with diverse characteristics and from different
domains. This was also important to provide a better test
base for the chosen heterogeneous infrastructure.

To select suitable applications, we applied a number of
criteria: there should be a need for each application from the
Swiss scientific user community, and its computational de-
mand should warrant a Grid execution. Sufficient expertise
has to be present, and the applications should not require
too complex requirements and should be able to work with
the limited resources we had available for the Seed Project.
The gridification of the applications would be done in the
most simple way, and if possible without changes in the
source code. The selected applications should be diverse
in as many aspects as possible. Finally, we might also reuse
already existing Grid-enabled applications.

Based on these criteria, we selected the following initial
applications: Cones, GAMESS, and PHYLIP, which will
be discussed below. All these three applications are CPU
intensive and therefore ideal candidates for running on a
Grid. We also investigated the commercial Huygens [15]
software for remote deconvolution of microscopy images in
the beginning, but then decided that its Grid-enabling would
be too much of an endeavor for the Seed Project.

4.1. Cones

Background: Cones [16] is a mathematical crystallog-
raphy program to investigate quadratic forms. It was devel-
oped by Peter Engel at UniBE. In dimension d, the cone of
positive-definite quadratic forms has dimension d(d+1)/2.
The subdivision of the cone gives an enumeration of the
combinatorial types of primitive parallelohedra. For a given

quadratic form, the Cones algorithm determines the sub-
cone of equivalent combinatorial types of parallelohedra,
and for each wall of the subcone, it determines the adjacent
subcone in order to find new types. In the 5-dimensional
case, only 222 combinatorial types of primitive parallelohe-
dra exist. However, in the 6-dimensional case a combinato-
rial explosion happens. With help of the Cones algorithm,
161,299,100 combinatorial types of primitive parallelohe-
dra were found in dimension 6 up to now. It is expected that
there are many more, with the total number estimated to be
greater than 200,000,000.

From a software engineering point of view, Cones is a
relatively simple single-threaded application written in C,
with ASCII input and output files. The individual calcu-
lations easily run in parallel independently of each other.
Therefore, Cones was selected as the first scientific applica-
tion to port to the Seed Project Grid infrastructure.

Utilization: To make the application deployment easy
and uniform, we refactored the source code, cleaned the
hard-coded dependencies, and created configure and make
files in compliance with the GNU configure and build sys-
tem. Then Cones has been deployed and tested on the Seed
Project gLite, ARC, and Condor pools. Within the ARC
testbed, the integration of Cones has been straightforward.
The main limiting factor is the destination cluster support
rather than the middleware. So Cones now runs in pre-
production mode on the ARC infrastructure.

With the Cones application, we were thus able to bring
the first scientific user to SWiNG in the Seed Project phase.
Peter Engel can now independently execute Cones calcula-
tions, controlled from the ARC user interface installed at
UZH. Up to now, about 50,000 new combinatorial types
of primitive parallelohedra were identified using SwiNG
testbed resources. However, there is still a lot of room for
improvement: missing in the described setup are a better
distribution of Cones jobs in the ARC pool, a more stable
environment for the job runs, a more user-friendly interface,
the transfer to SLCS certificates, and the installation of ad-
ditional resources to give more computing power to the ap-
plication. While some of these issues are bound to the ARC
middleware, some could be addressed in SWiNG working
groups following the initial Seed Project.

4.2. GAMESS

Background: GAMESS (General Atomic and Molecu-
lar Electronic Structure System) [17] is an ab initio molecu-
lar quantum chemistry program package. It allows comput-
ing important features of molecular systems and reactions
in gas phase and solution, such as electronic properties, en-
ergies, structures, and spectra. For this, a wide range of
quantum chemical methods is provided, which are all based
on approximations of the Schrodinger equation from quan-



tum mechanics. In its application domain, GAMESS rep-
resents a standard, free open source code, which is devel-
oped and used by many computational chemists around the
world, and maintained at lowa State University. The group
of Kim Baldridge at UZH is one of the core developers and
users.

GAMESS is a scientific application code with a long his-
tory, written mainly in Fortran 77 and C. It is available for
many different hardware architectures and operating sys-
tems, most of them Unix based. The program predom-
inantly consists of one main executable with shell script
wrappers and helper files. Large parts of the package are
well parallelized internally, using its own Distributed Data
Interface (DDI) implementation. Individual GAMESS runs
typically read a keyword-driven input file, and produce sev-
eral, usually text-based output files. Another GAMESS
use case scenario is parameter scans, where the scientist
changes any one or a combination of the input keyword set-
tings, as exemplified in [18].

Utilization: For the Seed Project, we used several test
input files and scientific examples. The GAMESS pack-
age contains a set of more than 40 test cases, which cover
all major parts of the code. In addition, Laura Zoppi (UZH)
provided a small parameter scan example, based on density-
functional theory (DFT) calculations of the corannulene
molecule, and Kim Baldridge (UZH) gave 223 input files
with Mgller-Plesset (MP2) calculations of various organic
molecules.

Regarding the status of GAMESS deployment on the
SwiNG testbed infrastructure, the program is still in the test
process on the ARC resources at UZH and CSCS, and on
the ARC-enabled Condor pool at EPFL. For the latter, each
job requires sending the executable with the input file, as
described above. A port of GAMESS to XWCH is being
developed by Afef Fkiri in collaboration with Nabil Abden-
nadher at HES-SO, and is close to completion. This will
allow to perform selected parameter scans within the input
files. Unfortunately, in the available time we were not able
to have scientific users run GAMESS on the SwiNG testbed
infrastructure. This could be one of the tasks for the work-
ing groups following the initial Seed Project.

4.3. PHYLIP

Background: PHYLIP (the PHYLogeny Inference
Package) [19] consists of programs for inferring phylo-
genies (evolutionary trees). Developed during the 1980s,
PHYLIP is one of the most widely-distributed phylogeny
packages that has over 15,000 registered users. The package
is free software, and has been ported to work on many dif-
ferent kinds of computer systems. Binaries and source code
(in C) are available for Windows, Mac OS X, and Linux.

An evolutionary tree is composed of several branches.

Each branch is composed of sub-branches and/or leaf nodes
(sequences). To construct the tree, the application defines
a “distance” among all pairs of biological sequences. The
evolutionary tree is then gradually built by sticking to the
same branch the pairs of sequences having the smallest dis-
tance between them. Even if the concept is simple, the al-
gorithm is CPU intensive. This complexity is due to two
factors: (1) The methods used to group sequences into
branches are complex. As an example, the Fitch program,
one of the most used methods, takes two hours to execute on
a Pentium 4 (3 GHz) computer with 120 sequences. (2) The
application constructs not only one tree from the original
data set, but a set of trees generated from a large number of
bootstrapped data sets (somewhere between 100 and 1000 is
usually adequate). These data are randomly generated from
the original data. The final (or consensus) tree is obtained
by retaining groups that occur as often as possible.

All PHYLIP programs have the same structure: they read
their input data from input files, process data, and write re-
sults to output files. Users execute PHYLIP programs by
following a given chronology (workflow) which depends on
their needs. This structure makes it easy to gridify PHYLIP.
In this context, a gridification consists of: automatically ex-
ecuting a given workflow “constructed” by the end-user ac-
cording to his/her needs, and distributing data among the
nodes of the Grid platform following a Single Program Mul-
tiple Data (SPMD) model.

Utilization: Five modules were ported to the volun-
teer computing platform XWCH: Segboot, Dnadist, Fitch-
Margoliash, Neighbor-Joining, and Consensus [20, 21]. In
order to apply the Fitch module to a large number of se-
quences, a parallel version of this package was designed
and ported to XWCH. The gridified version of PHYLIP
was used to generate an evolutionary tree related to HIV
sequences and was executed on more than 200 nodes (Win-
dows, Linux, and SunOS), located in two geographically
distributed sites in Switzerland. A specific web service was
developed in order to allow a dynamic configuration of the
application regarding the current state of the platform (num-
ber and performance of the nodes) and the parameters of
the application (number of sequences and number of boot-
strapped data sets).

5. Conclusion

We have demonstrated the initialization of a national
Grid collaboration in Switzerland within the limited re-
sources of the SWiNG Seed Project: we successfully tested
a new security tool that makes it easier for Swiss users
to access the Grid (SLCS). We set up testbed resources
for different kinds of middleware (gLite, ARC, XWCH,
Condor), and an initial step towards Grid interoperabil-
ity has been taken (Condor within the ARC pool). We



also explored the porting of different applications (Cones,
GAMESS, PHYLIP) onto the corresponding infrastructure,
bringing one of them (Cones) into a state where it can be
used by a scientist.

This has only been possible since we took an approach
based on a heterogeneous set of Grid middleware tools and
scientific applications. Given that Grid computing comes
with the notion of resource and knowledge sharing, we prof-
ited from the considerable interest, expertise, and resources
in Grid computing that previously existed in Switzerland,
but had been directed mostly towards projects with external
partners. For initializing a technical collaboration such an
approach turned out to be useful.

However, there also exist limitations of such an ap-
proach: based to a large extend on the investment of
spare time of the participants, one can only reach a test-
level setup. Even this level though required a consider-
able amount of work, constant communication, and active
project management. To go beyond this stage towards a
production setup, funding is definitively required. Since we
were not restricted by the available computer resources, but
by people’s time, the investment needs to go mainly into
having dedicated people.

Regarding the Grid middleware, our experience is simi-
lar to that of previous Grid projects: most of the middleware
tools are still fairly demanding to install, maintain, and use,
mainly due to their complexity and insufficient documen-
tation. This applies to the system administrators’ side, but
even more to application developers and users. How appli-
cation jobs are optimally distributed over a Grid and find
the best matching resources is still not fully solved. Inter-
operability is possible, but tricky to achieve, in particular
beyond one-to-one interfacing. There is a strong need for
simplification and improvement, and for the agreement on
standards, both on a technical level as well as regarding pro-
cedures, for example for user setup.

Our work also shows deficiencies on the side of the sci-
entific applications. Application code is very diverse, and to
run it on any Grid infrastructure requires direct cooperation
among scientific developers and Grid experts. One reason
for this is that standards for software writing and packaging
are often ignored, which results in poor installation, doc-
umentation, and sometimes overall performance. This can
be understood since scientists are seldom trained as soft-
ware developers, and their main interest is the implementa-
tion of new scientific methods, not ease of deployment or
usage. In order to run applications on the Grid, application
developers need to provide well documented and packaged
distributions that provide installation, configuration, testing
and use procedures.

The Seed Project has officially ended in fall 2007, and
the SWiNG association has been formally instantiated. The
work described in this article will be continued by new

working groups that are currently in the foundation state.
It remains to be seen which Grid middleware, scientific ap-
plications, and services a future production infrastructure in
Switzerland will offer to its users. Thanks to our efforts
the capabilities of different middleware tools could be com-
pared and a network of expertise to share this knowledge
could be initialized, so that we will be able to provide a
solid foundation for establishing a Swiss Grid infrastructure
in the near future.

References

[1] Enabling Grids for E-sciencE, http://www.eu-egee.org, Nov.
2007.

[2] Pacific Rim Applications and Grid Middleware Assembly,
http://www.pragma-grid.net, Nov. 2007.

[3] EGI, http://www.eu-egi.org, Sep. 2007.

[4] SwiNG, http://www.swing-grid.ch, Jan. 2008.

[5] H. Stockinger, “Defining the Grid: A Snapshot on the Cur-
rent View”, Journal of Supercomputing, vol. 42, no. 1, pp.
3-17, 2007.

[6] M. Podvinec, S. Maffioletti, P. Kunszt, K. Arnold, L. Cerutti,
B. Nyffeler, R. Schlapbach, C. Tiirker, H. Stockinger, A.
J. Thomas, M. C. Peitsch, and T. Schwede, “The SwissBi-
0Grid Project: Objectives, Preliminary Results and Lessons
Learned”, 2nd IEEE International Conference on e-Science
and Grid Computing (e-Science 2006) — Workshop on Run-
ning Production Grids, Amsterdam, The Netherlands, Dec.
4-6, 2006.

[7]1 SLCS, http://www.switch.ch/grid/slcs/, Nov. 2007.

[8] AAL http://www.switch.ch/aai/, Nov. 2007.

[9] gLite, http://www.glite.org, Nov. 2007.

[10] LCG, http://lcg.web.cern.ch/LCG/, Nov. 2007.

[11] Globus, http://www.globus.org, Nov. 2007.

[12] ARC, http://www.nordugrid.org/middleware/, Nov. 2007.

[13] XtremWeb-CH, http://www.xtremwebch.net, Nov. 2007.

[14] Condor, http://www.condorproject.org, Nov. 2007.

[15] Huygens, http://www.svi.nl, Nov. 2007.

[16] P. Engel, “The Combinatorial Types of Primitive Parallelo-
hedra”, University of Bern, 2007, unpublished.

[17] GAMESS, http://www.msg.chem.iastate.edu/gamess/, Nov.
2007.

[18] W. Sudholt, K. K. Baldridge, D. Abramson, C. Enticott,
S. Garic, C. Kondric, and D. Nguyen, “Application of
Grid Computing to Parameter Sweeps and Optimizations
in Molecular Modeling”, Future Generation Computer Sys-
tems, vol. 21, pp. 27-35, 2005.

[19] PHYLIP, http://evolution.genetics.washington.edu/phylip.
html, Nov. 2007.

[20] N. Abendenadher and R. Boesch, “Porting PHYLIP Phylo-
genetic Package on the Desktop GRID Platform XtremWeb-
CH”, HealthGrid’07, Geneva, Switzerland, April 2007.

[21] N. Abendenadher and R. Boesch, “Deploying PHYLIP Phy-
logenetic Package on a Large Scale Distributed System”,
CCGrid’07 — BioGrid’07 Workshop, Rio de Janeiro, Brazil,
May 2007.



